Local Feature Based Person Reidentification in Infrared Image Sequences

K. Jüngling, Michael Arens
{"title":"Local Feature Based Person Reidentification in Infrared Image Sequences","authors":"K. Jüngling, Michael Arens","doi":"10.1109/AVSS.2010.75","DOIUrl":null,"url":null,"abstract":"In this paper, we address the task of appearance basedperson reidentification in infrared image sequences. Whilecommon approaches for appearance based person reidentificationin the visible spectrum acquire color histograms ofa person, this technique is not applicable in infrared for obviousreasons. To tackle the more difficult problem of personreidentification in infrared, we introduce an approachthat relies on local image features only and thus is completelyindependent of sensor specific features which mightbe available only in the visible spectrum. Our approachfits into an Implicit Shape Model (ISM) based person detectionand tracking strategy described in previous work.Local features collected during tracking are employed forperson reidentification while the generalizing appearancecodebook used for person detection serves as structuringelement to generate person signatures. By this, we gain anintegrated approach that allows for fast online model generation,a compact representation, and fast model matching.Since the model allows for a joined representation ofappearance and spatial information, no complex representationmodels like graph structures are needed. We evaluateour person reidentification approach on a subset of the CASIAinfrared dataset.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

In this paper, we address the task of appearance basedperson reidentification in infrared image sequences. Whilecommon approaches for appearance based person reidentificationin the visible spectrum acquire color histograms ofa person, this technique is not applicable in infrared for obviousreasons. To tackle the more difficult problem of personreidentification in infrared, we introduce an approachthat relies on local image features only and thus is completelyindependent of sensor specific features which mightbe available only in the visible spectrum. Our approachfits into an Implicit Shape Model (ISM) based person detectionand tracking strategy described in previous work.Local features collected during tracking are employed forperson reidentification while the generalizing appearancecodebook used for person detection serves as structuringelement to generate person signatures. By this, we gain anintegrated approach that allows for fast online model generation,a compact representation, and fast model matching.Since the model allows for a joined representation ofappearance and spatial information, no complex representationmodels like graph structures are needed. We evaluateour person reidentification approach on a subset of the CASIAinfrared dataset.
基于局部特征的红外图像序列人物再识别
本文研究了红外图像序列中基于外观的人物再识别问题。在可见光谱中,基于外观的人再识别方法通常获得人的颜色直方图,但由于明显的原因,该技术不适用于红外。为了解决红外中更困难的人物识别问题,我们引入了一种仅依赖于局部图像特征的方法,因此完全独立于可能仅在可见光谱中可用的传感器特定特征。我们在之前的工作中描述了一种基于隐式形状模型(ISM)的人员检测和跟踪策略。在跟踪过程中收集的局部特征用于人员再识别,而用于人员检测的泛化外观代码簿作为结构元素生成人员签名。通过这种方法,我们获得了一种集成的方法,该方法允许快速在线模型生成,紧凑的表示和快速的模型匹配。由于该模型允许外观和空间信息的联合表示,因此不需要像图结构这样复杂的表示模型。我们在casia红外数据集的一个子集上评估了我们的人员再识别方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信