On-Line Blind Unmixing For Hyperspectral Pushbroom Imaging Systems

Ludivine Nus, S. Miron, D. Brie
{"title":"On-Line Blind Unmixing For Hyperspectral Pushbroom Imaging Systems","authors":"Ludivine Nus, S. Miron, D. Brie","doi":"10.1109/SSP.2018.8450702","DOIUrl":null,"url":null,"abstract":"In this paper, the on-line hyperspectral image blind unmixing is addressed. Inspired by the Incremental Non-negative Matrix Factorization (INMF) method [2], we propose an on-line NMF which is adapted to the acquisition scheme of a pushbroom imager. Because of the non-uniqueness of the NMF model, a minimum volume constraint on the endmembers is added allowing to reduce the set of admissible solutions. This results in a stable algorithm yielding results similar to those of standard off-line NMF methods, but drastically reducing the computation time. The algorithm is applied to wood hyperspectral images showing that such a technique is effective for the on-line prediction of wood piece rendering after finishing.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, the on-line hyperspectral image blind unmixing is addressed. Inspired by the Incremental Non-negative Matrix Factorization (INMF) method [2], we propose an on-line NMF which is adapted to the acquisition scheme of a pushbroom imager. Because of the non-uniqueness of the NMF model, a minimum volume constraint on the endmembers is added allowing to reduce the set of admissible solutions. This results in a stable algorithm yielding results similar to those of standard off-line NMF methods, but drastically reducing the computation time. The algorithm is applied to wood hyperspectral images showing that such a technique is effective for the on-line prediction of wood piece rendering after finishing.
高光谱推扫成像系统的在线盲解混
本文研究了在线高光谱图像的盲解。受增量非负矩阵分解(INMF)方法[2]的启发,我们提出了一种适合于推帚式成像仪采集方案的在线非负矩阵分解方法。由于NMF模型的非唯一性,增加了端元的最小体积约束,从而减小了可容许解的集合。这导致了一个稳定的算法,产生类似于标准离线NMF方法的结果,但大大减少了计算时间。将该算法应用于木材高光谱图像,结果表明,该算法可以有效地在线预测木材加工后的渲染效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信