Sonar Image Composition for Semantic Segmentation Using Machine Learning

William Ard, Corina Barbalata
{"title":"Sonar Image Composition for Semantic Segmentation Using Machine Learning","authors":"William Ard, Corina Barbalata","doi":"10.1109/WACVW58289.2023.00031","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for merging side scan sonar data and bathymetry information for the benefit of improved automatic shipwreck identification. The steps to combine a raw side-scan sonar image with a 2D relief map into a new composite RGB image are presented in detail, and a supervised image segmentation approach via the U-Net architecture is implemented to identify shipwrecks. To validate the effectiveness of the approach, two datasets were created from shipwreck surveys: one using side-scan only, and one using the new composite RGB images. The U-Net model was trained and tested on each dataset, and the results were compared. The test results show a mean accuracy which is 15% higher for the case where the RGB composition is used when compared with the model trained and tested with the side-scan sonar only dataset. Furthermore, the mean intersection over union (IoU) shows an increase of 9.5% using the RGB composition model.","PeriodicalId":306545,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW58289.2023.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an approach for merging side scan sonar data and bathymetry information for the benefit of improved automatic shipwreck identification. The steps to combine a raw side-scan sonar image with a 2D relief map into a new composite RGB image are presented in detail, and a supervised image segmentation approach via the U-Net architecture is implemented to identify shipwrecks. To validate the effectiveness of the approach, two datasets were created from shipwreck surveys: one using side-scan only, and one using the new composite RGB images. The U-Net model was trained and tested on each dataset, and the results were compared. The test results show a mean accuracy which is 15% higher for the case where the RGB composition is used when compared with the model trained and tested with the side-scan sonar only dataset. Furthermore, the mean intersection over union (IoU) shows an increase of 9.5% using the RGB composition model.
基于机器学习的声纳图像合成语义分割
本文提出了一种融合侧扫声纳数据和测深信息的方法,以提高海难自动识别能力。详细介绍了将原始侧扫声纳图像与2D地形图结合成新的复合RGB图像的步骤,并实现了通过U-Net架构的监督图像分割方法来识别沉船。为了验证该方法的有效性,从沉船调查中创建了两个数据集:一个仅使用侧面扫描,另一个使用新的复合RGB图像。U-Net模型在每个数据集上进行训练和测试,并对结果进行比较。测试结果显示,与仅使用侧扫声纳数据集训练和测试的模型相比,使用RGB成分的情况下,平均精度高出15%。此外,使用RGB组合模型,平均交点比联合(IoU)增加了9.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信