Multi-objective optimization with an evolutionary artificial neural network for financial forecasting

Matthew Butler, Ali Daniyal
{"title":"Multi-objective optimization with an evolutionary artificial neural network for financial forecasting","authors":"Matthew Butler, Ali Daniyal","doi":"10.1145/1569901.1570096","DOIUrl":null,"url":null,"abstract":"In this paper, we attempt to make accurate predictions of the movement of the stock market with the aid of an evolutionary artificial neural network (EANN). To facilitate this objective we constructed an EANN for multi-objective optimization (MOO) that was trained with macro-economic data and its effect on market performance. Experiments were conducted with EANNs that updated connection weights through genetic operators (crossover and mutation) and/or with the aid of back-propagation. The results showed that the optimal performance was achieved under natural complexification of the EANN and that back-propagation tended to over fit the data. The results also suggested that EANNs trained with multi-objectives were more robust than that of a single optimization approach. The MOO approach produced superior investment returns during training and testing over a single objective optimization (SOO).","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, we attempt to make accurate predictions of the movement of the stock market with the aid of an evolutionary artificial neural network (EANN). To facilitate this objective we constructed an EANN for multi-objective optimization (MOO) that was trained with macro-economic data and its effect on market performance. Experiments were conducted with EANNs that updated connection weights through genetic operators (crossover and mutation) and/or with the aid of back-propagation. The results showed that the optimal performance was achieved under natural complexification of the EANN and that back-propagation tended to over fit the data. The results also suggested that EANNs trained with multi-objectives were more robust than that of a single optimization approach. The MOO approach produced superior investment returns during training and testing over a single objective optimization (SOO).
基于进化人工神经网络的财务预测多目标优化
在本文中,我们试图借助进化人工神经网络(EANN)对股票市场的运动做出准确的预测。为了实现这一目标,我们构建了一个用于多目标优化(MOO)的EANN,该EANN使用宏观经济数据及其对市场表现的影响进行训练。通过遗传算子(交叉和突变)和/或借助反向传播更新连接权重的eann进行了实验。结果表明,在自然复化条件下,EANN的性能最优,反向传播倾向于过拟合数据。结果还表明,多目标训练的eann比单一优化方法具有更强的鲁棒性。在培训和测试期间,MOO方法比单一目标优化(SOO)产生了更高的投资回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信