Transparent GPU memory management for DNNs

Jungho Park, Hyungmin Cho, Wookeun Jung, Jaejin Lee
{"title":"Transparent GPU memory management for DNNs","authors":"Jungho Park, Hyungmin Cho, Wookeun Jung, Jaejin Lee","doi":"10.1145/3178487.3178531","DOIUrl":null,"url":null,"abstract":"Modern DNN frameworks exploit GPU acceleration by default to achieve high performance. The limitation of GPU memory capacity becomes a serious problem because DNNs are becoming deeper and larger. This paper proposes a purely software-based transparent solution, called tvDNN, to the GPU memory capacity problem. It is based on GPU memory swapping and memory object sectioning techniques. It also provides an efficient memory-object swapping schedule based on ILP (optimal) and heuristics (suboptimal). The experimental results show that tvDNN enables Caffe to build VGG-16 with a large batch size, such as 256 or 512, using a few GB of GPU memory without significant performance degradation.","PeriodicalId":193776,"journal":{"name":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3178487.3178531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Modern DNN frameworks exploit GPU acceleration by default to achieve high performance. The limitation of GPU memory capacity becomes a serious problem because DNNs are becoming deeper and larger. This paper proposes a purely software-based transparent solution, called tvDNN, to the GPU memory capacity problem. It is based on GPU memory swapping and memory object sectioning techniques. It also provides an efficient memory-object swapping schedule based on ILP (optimal) and heuristics (suboptimal). The experimental results show that tvDNN enables Caffe to build VGG-16 with a large batch size, such as 256 or 512, using a few GB of GPU memory without significant performance degradation.
透明GPU内存管理的dnn
现代深度神经网络框架默认使用GPU加速来实现高性能。随着深度神经网络变得越来越大,GPU内存容量的限制成为一个严重的问题。本文提出了一种纯粹基于软件的透明解决方案,称为tvDNN,以解决GPU内存容量问题。它是基于GPU内存交换和内存对象分割技术。它还提供了基于ILP(最优)和启发式(次优)的高效内存对象交换计划。实验结果表明,tvDNN使Caffe能够使用几GB的GPU内存构建批量大小较大的VGG-16,例如256或512,而不会出现明显的性能下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信