A Hybrid Approach to Cleansing Software Measurement Data

T. Khoshgoftaar, J. V. Hulse, Chris Seiffert
{"title":"A Hybrid Approach to Cleansing Software Measurement Data","authors":"T. Khoshgoftaar, J. V. Hulse, Chris Seiffert","doi":"10.1109/ICTAI.2006.11","DOIUrl":null,"url":null,"abstract":"Data is extremely important in empirical software engineering. Techniques that provide insight into potential anomalies or inaccuracies in a dataset are becoming an increasingly important way for a data analyst to cope with flawed data. We present a novel hybrid procedure for quantitative outcome correction along with controlled experiments using a real-world software measurement dataset to demonstrate the usefulness of our technique. Instances that are deemed to be noisy relative to the dependent variable, which represents the number of faults recorded in the program module, are cleansed by replacing the original value with a more appropriate alternative value","PeriodicalId":169424,"journal":{"name":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2006.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Data is extremely important in empirical software engineering. Techniques that provide insight into potential anomalies or inaccuracies in a dataset are becoming an increasingly important way for a data analyst to cope with flawed data. We present a novel hybrid procedure for quantitative outcome correction along with controlled experiments using a real-world software measurement dataset to demonstrate the usefulness of our technique. Instances that are deemed to be noisy relative to the dependent variable, which represents the number of faults recorded in the program module, are cleansed by replacing the original value with a more appropriate alternative value
清洗软件测量数据的混合方法
数据在经验软件工程中是极其重要的。能够洞察数据集中潜在异常或不准确的技术正成为数据分析师处理有缺陷数据的一种越来越重要的方式。我们提出了一种新的混合程序,用于定量结果校正以及使用真实世界软件测量数据集的对照实验,以证明我们技术的实用性。相对于表示程序模块中记录的故障数量的因变量,被认为是嘈杂的实例通过用更合适的替代值替换原始值来清除
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信