A New Tubular Structure Tracking Algorithm Based On Curvature-Penalized Perceptual Grouping

Li Liu, Da Chen, Minglei Shu, H. Shu, L. Cohen
{"title":"A New Tubular Structure Tracking Algorithm Based On Curvature-Penalized Perceptual Grouping","authors":"Li Liu, Da Chen, Minglei Shu, H. Shu, L. Cohen","doi":"10.1109/ICASSP39728.2021.9414114","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new minimal path-based framework for minimally interactive tubular structure tracking in conjunction with a perceptual grouping scheme. The minimal path models have shown great advantages in tubular structures tracing. However, they suffer from shortcuts or short branches combination problems especially in the case of tubular network with complicated structures or background. Thus, we utilize the curvature-penalized minimal paths and the prescribed tubular trajectories to seek the desired shortest path. The proposed approach benefits from the local smoothness prior on tubular structures and the global optimality of the graph-based path searching scheme. Experimental results on synthetic and real images prove that the proposed model indeed obtains outperformance to state-of-the-art minimal path-based algorithms.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose a new minimal path-based framework for minimally interactive tubular structure tracking in conjunction with a perceptual grouping scheme. The minimal path models have shown great advantages in tubular structures tracing. However, they suffer from shortcuts or short branches combination problems especially in the case of tubular network with complicated structures or background. Thus, we utilize the curvature-penalized minimal paths and the prescribed tubular trajectories to seek the desired shortest path. The proposed approach benefits from the local smoothness prior on tubular structures and the global optimality of the graph-based path searching scheme. Experimental results on synthetic and real images prove that the proposed model indeed obtains outperformance to state-of-the-art minimal path-based algorithms.
一种基于曲率惩罚感知分组的管状结构跟踪新算法
在本文中,我们提出了一个新的基于最小路径的框架,用于最小交互管状结构跟踪,并结合感知分组方案。最小路径模型在管状结构跟踪中显示出很大的优势。但在结构复杂或背景复杂的管状网络中,存在着走捷径或短支路组合的问题。因此,我们利用曲率惩罚最小路径和规定的管状轨迹来寻求所需的最短路径。该方法利用了管状结构的局部平滑先验和基于图的路径搜索方案的全局最优性。在合成图像和真实图像上的实验结果表明,该模型确实优于最先进的基于最小路径的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信