Dynamic Systems Identification using Müntz Function Neural Networks with Distributed Dynamics

B. Dankovic, Z. Jovanovic, M. Milojković
{"title":"Dynamic Systems Identification using Müntz Function Neural Networks with Distributed Dynamics","authors":"B. Dankovic, Z. Jovanovic, M. Milojković","doi":"10.1109/TELSKS.2005.1572170","DOIUrl":null,"url":null,"abstract":"This paper illustrates how the Muntz neural networks can be used effectively for identification of linear and nonlinear dynamic systems. A neuron is utilized to build the Muntz networks with locally distributed dynamics to identify input/output models of dynamic processes. For static neural network design, the orthogonal Muntz polynomials are used; for dynamic part, the orthogonal Muntz-Legendre rational functions are used","PeriodicalId":422115,"journal":{"name":"TELSIKS 2005 - 2005 uth International Conference on Telecommunication in ModernSatellite, Cable and Broadcasting Services","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TELSIKS 2005 - 2005 uth International Conference on Telecommunication in ModernSatellite, Cable and Broadcasting Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELSKS.2005.1572170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper illustrates how the Muntz neural networks can be used effectively for identification of linear and nonlinear dynamic systems. A neuron is utilized to build the Muntz networks with locally distributed dynamics to identify input/output models of dynamic processes. For static neural network design, the orthogonal Muntz polynomials are used; for dynamic part, the orthogonal Muntz-Legendre rational functions are used
基于Müntz函数神经网络的分布式动态系统识别
本文阐述了Muntz神经网络如何有效地用于线性和非线性动态系统的辨识。利用神经元构建局部分布动态的Muntz网络来识别动态过程的输入/输出模型。静态神经网络设计采用正交蒙兹多项式;对于动力部分,采用正交Muntz-Legendre有理函数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信