The Two-Block Covariance Matrix and the CAPM

David J. Disatnik, S. Benninga
{"title":"The Two-Block Covariance Matrix and the CAPM","authors":"David J. Disatnik, S. Benninga","doi":"10.2139/ssrn.1963124","DOIUrl":null,"url":null,"abstract":"The classical assumptions of the Capital Asset Pricing Model do not ensure obtaining a tangency (market) portfolio in which all the risky assets appear with positive proportions. This paper gives an additional set of assumptions that ensure obtaining such a portfolio. Our new set of assumptions mainly deals with the structure of the covariance matrix of the risky assets returns. The structure we suggest for the covariance matrix is of a two-block type. We derive analytically sufficient conditions for a matrix of this type to produce a long-onlytangency portfolio (as well as a long-only global minimum variance portfolio).","PeriodicalId":178382,"journal":{"name":"ERN: Portfolio Optimization (Topic)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Portfolio Optimization (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1963124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The classical assumptions of the Capital Asset Pricing Model do not ensure obtaining a tangency (market) portfolio in which all the risky assets appear with positive proportions. This paper gives an additional set of assumptions that ensure obtaining such a portfolio. Our new set of assumptions mainly deals with the structure of the covariance matrix of the risky assets returns. The structure we suggest for the covariance matrix is of a two-block type. We derive analytically sufficient conditions for a matrix of this type to produce a long-onlytangency portfolio (as well as a long-only global minimum variance portfolio).
二块协方差矩阵与CAPM
资本资产定价模型的经典假设并不能保证得到所有风险资产都以正比例出现的切线(市场)投资组合。本文给出了一组额外的假设,以确保获得这样的投资组合。我们的新假设集主要处理风险资产收益协方差矩阵的结构。我们建议的协方差矩阵的结构是双块型的。我们导出了这种类型的矩阵产生只做多的切线投资组合(以及只做多的全局最小方差投资组合)的解析充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信