Optimal non-coherent detection in K-distributed clutter environment

Yunhan Dong
{"title":"Optimal non-coherent detection in K-distributed clutter environment","authors":"Yunhan Dong","doi":"10.1109/RADAR.2013.6651994","DOIUrl":null,"url":null,"abstract":"Non-coherent detection of Gaussian targets (Swerling II targets) in the K-distributed clutter environment is investigated. The optimal detector is derived based on the Neyman-Pearson principle. It is shown to be the well-known square-law detector in the domain of multi-pulse process. Temporally correlated clutter provides a target gain, and improves detection. The higher the temporal correlation, the higher the target gain. Spatially correlated underlying clutter texture can also provide a constant false-alarm (CFAR) gain. The autoregressive technique is used to optimally estimate the texture of clutter. That in turn significanly improves the detection compared to the traditional cell-averaging processing in the range domain.","PeriodicalId":365285,"journal":{"name":"2013 International Conference on Radar","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2013.6651994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Non-coherent detection of Gaussian targets (Swerling II targets) in the K-distributed clutter environment is investigated. The optimal detector is derived based on the Neyman-Pearson principle. It is shown to be the well-known square-law detector in the domain of multi-pulse process. Temporally correlated clutter provides a target gain, and improves detection. The higher the temporal correlation, the higher the target gain. Spatially correlated underlying clutter texture can also provide a constant false-alarm (CFAR) gain. The autoregressive technique is used to optimally estimate the texture of clutter. That in turn significanly improves the detection compared to the traditional cell-averaging processing in the range domain.
k分布杂波环境下的最优非相干检测
研究了k分布杂波环境下高斯目标(Swerling II型目标)的非相干检测。基于内曼-皮尔逊原理推导出最优检测器。结果表明,它是多脉冲过程领域中著名的平方律检测器。时间相关杂波提供了目标增益,并提高了检测。时间相关性越高,目标增益越高。空间相关的底层杂波纹理也可以提供恒定的虚警(CFAR)增益。采用自回归技术对杂波的纹理进行最优估计。与传统的距离域单元平均处理相比,这反过来又显著提高了检测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信