Hyperspherical Deterministic Sampling Based on Riemannian Geometry for Improved Nonlinear Bingham Filtering

Kailai Li, F. Pfaff, U. Hanebeck
{"title":"Hyperspherical Deterministic Sampling Based on Riemannian Geometry for Improved Nonlinear Bingham Filtering","authors":"Kailai Li, F. Pfaff, U. Hanebeck","doi":"10.23919/fusion43075.2019.9011390","DOIUrl":null,"url":null,"abstract":"We present a novel geometry-driven scheme for generating equally weighted deterministic samples of Bingham distributions in arbitrary dimensions. Unlike existing approaches, our method provides flexibility in the sampling size with samples satisfying requirements of the unscented transform while approximating higher-order moments of the Bingham distribution. This is done by first using Dirac mixture approximation as a sampling scheme on the tangent plane at the mode with respect to the Bingham density via gnomonic projection. Subsequently, the tangent sigma points are retracted backwards to the hypersphere, after which an on-manifold moment correction is performed via Riemannian optimization. The proposed approach is further applied to quaternion Bingham filtering for recursive orientation estimations. Evaluation results show that the geometry-adaptive sampling scheme gives better tracking accuracy and robustness for nonlinear orientation estimations.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We present a novel geometry-driven scheme for generating equally weighted deterministic samples of Bingham distributions in arbitrary dimensions. Unlike existing approaches, our method provides flexibility in the sampling size with samples satisfying requirements of the unscented transform while approximating higher-order moments of the Bingham distribution. This is done by first using Dirac mixture approximation as a sampling scheme on the tangent plane at the mode with respect to the Bingham density via gnomonic projection. Subsequently, the tangent sigma points are retracted backwards to the hypersphere, after which an on-manifold moment correction is performed via Riemannian optimization. The proposed approach is further applied to quaternion Bingham filtering for recursive orientation estimations. Evaluation results show that the geometry-adaptive sampling scheme gives better tracking accuracy and robustness for nonlinear orientation estimations.
基于黎曼几何的超球面确定性采样改进非线性Bingham滤波
我们提出了一种新的几何驱动方案,用于生成任意维宾厄姆分布的等加权确定性样本。与现有方法不同的是,我们的方法在样本量上提供了灵活性,使样本量满足unscented变换的要求,同时逼近Bingham分布的高阶矩。这是通过首先使用狄拉克混合近似作为采样方案在切平面上的模式相对于宾厄姆密度通过多项式投影来完成的。随后,将切线西格玛点回缩到超球中,然后通过黎曼优化进行流形矩校正。将该方法进一步应用于四元数Bingham滤波的递推方向估计。评价结果表明,几何自适应采样方案对非线性方向估计具有较好的跟踪精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信