Machine Learning Models for PFAS Tracking, Detection and Remediation: A Review

Nagababu Andraju, G. Curtzwiler, Yun Ji, E. Kozliak, Prakash Ranganathan
{"title":"Machine Learning Models for PFAS Tracking, Detection and Remediation: A Review","authors":"Nagababu Andraju, G. Curtzwiler, Yun Ji, E. Kozliak, Prakash Ranganathan","doi":"10.1109/eIT57321.2023.10187291","DOIUrl":null,"url":null,"abstract":"Per- and polyfluoroalkyl substances (PFAS) are known for their persistence, toxicity, and potential to cause harm to human health and the environment. Traditional monitoring methods are often expensive and time-consuming. The paper provides a review of existing machine learning (ML) models for PFAS detection and treatment processes. The paper also highlights a ML workflow process for PFAS detection, remediation technologies, and the need for unified open-source database for PFAS assessment in water.","PeriodicalId":113717,"journal":{"name":"2023 IEEE International Conference on Electro Information Technology (eIT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Electro Information Technology (eIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eIT57321.2023.10187291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Per- and polyfluoroalkyl substances (PFAS) are known for their persistence, toxicity, and potential to cause harm to human health and the environment. Traditional monitoring methods are often expensive and time-consuming. The paper provides a review of existing machine learning (ML) models for PFAS detection and treatment processes. The paper also highlights a ML workflow process for PFAS detection, remediation technologies, and the need for unified open-source database for PFAS assessment in water.
PFAS跟踪、检测和修复的机器学习模型综述
全氟烷基和多氟烷基物质(PFAS)因其持久性、毒性和可能对人类健康和环境造成危害而闻名。传统的监测方法往往既昂贵又耗时。本文综述了用于PFAS检测和处理过程的现有机器学习(ML)模型。本文还重点介绍了PFAS检测的ML工作流程、修复技术,以及对水中PFAS评估的统一开源数据库的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信