Optimal design of validation experiments based on informatic entropy

Wei Deng, Y. Dou
{"title":"Optimal design of validation experiments based on informatic entropy","authors":"Wei Deng, Y. Dou","doi":"10.1109/icomssc45026.2018.8941825","DOIUrl":null,"url":null,"abstract":"This electronic document focuses on how optimal design of validation experiment to allow conclusive comparison of model prediction with experimental data in model assessment. Our scheme promises the model assessment to be implemented at highest or lowest similarity between the distribution of the experimental outcome and model prediction through minimizing or maximizing the corresponding expected relative-entropy. Besides, Bayesian theory is incorporated into updating the distribution of experimental outcome based on new experimental data. Moreover, fuzzy inference is used to catch the optimal values in our methodology. Our scheme is illustrated for the optimal design of Sandia’s Thermal problem validation experiment.","PeriodicalId":332213,"journal":{"name":"2018 International Computers, Signals and Systems Conference (ICOMSSC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Computers, Signals and Systems Conference (ICOMSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icomssc45026.2018.8941825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This electronic document focuses on how optimal design of validation experiment to allow conclusive comparison of model prediction with experimental data in model assessment. Our scheme promises the model assessment to be implemented at highest or lowest similarity between the distribution of the experimental outcome and model prediction through minimizing or maximizing the corresponding expected relative-entropy. Besides, Bayesian theory is incorporated into updating the distribution of experimental outcome based on new experimental data. Moreover, fuzzy inference is used to catch the optimal values in our methodology. Our scheme is illustrated for the optimal design of Sandia’s Thermal problem validation experiment.
基于信息熵的验证实验优化设计
本文主要讨论了在模型评估中如何优化验证实验设计,使模型预测与实验数据进行结论性比较。我们的方案通过最小化或最大化相应的期望相对熵,承诺在实验结果分布与模型预测之间的最高或最低相似性时实现模型评估。并结合贝叶斯理论,根据新的实验数据更新实验结果的分布。此外,在我们的方法中,模糊推理被用来捕捉最优值。该方案为桑迪亚热问题验证实验的优化设计提供了实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信