Magnetic Circuit Model: A Quick and Accurate Sizing Model for Electrical Machine Optimization in Hybrid Vehicles

V. Reinbold, E. Vinot, L. Garbuio, L. Gerbaud
{"title":"Magnetic Circuit Model: A Quick and Accurate Sizing Model for Electrical Machine Optimization in Hybrid Vehicles","authors":"V. Reinbold, E. Vinot, L. Garbuio, L. Gerbaud","doi":"10.1109/VPPC.2014.7007098","DOIUrl":null,"url":null,"abstract":"Numerous researches about hybrid electrical vehicles (HEV) deal with topologies, technologies, sizing and control. These aspects allows to reduce transportation cost and environmental impacts. The paper focuses on the modeling of the electrical motor of the HEV in a global sizing context, taking into account: the hybrid system, the driving cycle and an optimal energy management. In the paper, the parallel hybrid electrical vehicle (HEV) will be our study case. In a classical HEV design process, a scaling model is usually used to fix the standard power of the electrical machine. The efficiency and the maximum torque power are scaled using a linear dependency on the rated maximum power. The paper compares two sizing models: a scaling model based on an efficiency map and a scaling model based on a magnetic circuit model (MCM). A comparison is performed using both models in an optimization process. This optimization process is a global sizing process using dynamic programming as an optimal energy management. Optimal sizings of the hybrid vehicle are compared, depending on whether they use a classical sizing method or a MCM scaling method.","PeriodicalId":133160,"journal":{"name":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2014.7007098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Numerous researches about hybrid electrical vehicles (HEV) deal with topologies, technologies, sizing and control. These aspects allows to reduce transportation cost and environmental impacts. The paper focuses on the modeling of the electrical motor of the HEV in a global sizing context, taking into account: the hybrid system, the driving cycle and an optimal energy management. In the paper, the parallel hybrid electrical vehicle (HEV) will be our study case. In a classical HEV design process, a scaling model is usually used to fix the standard power of the electrical machine. The efficiency and the maximum torque power are scaled using a linear dependency on the rated maximum power. The paper compares two sizing models: a scaling model based on an efficiency map and a scaling model based on a magnetic circuit model (MCM). A comparison is performed using both models in an optimization process. This optimization process is a global sizing process using dynamic programming as an optimal energy management. Optimal sizings of the hybrid vehicle are compared, depending on whether they use a classical sizing method or a MCM scaling method.
磁路模型:一种用于混合动力汽车电机优化的快速、准确的定径模型
关于混合动力汽车(HEV)的众多研究涉及拓扑、技术、尺寸和控制。这些方面可以降低运输成本和环境影响。本文重点研究了混合动力汽车电机在全球范围内的建模,考虑了混合动力系统、行驶循环和最优能量管理。本文以并联混合动力汽车(HEV)为研究对象。在经典的混合动力设计过程中,通常使用比例模型来确定电机的标准功率。效率和最大扭矩功率使用线性依赖于额定最大功率进行缩放。本文比较了两种分级模型:基于效率图的分级模型和基于磁路模型的分级模型。在优化过程中对两种模型进行了比较。该优化过程采用动态规划作为最优能量管理的全局分级过程。比较了混合动力汽车的最优尺寸,这取决于它们是使用经典尺寸方法还是使用MCM尺寸方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信