Off-line handwritten word recognition (HWR) using a single contextual hidden Markov model

Mou-Yen Chen, A. Kundu, Jian Zhou
{"title":"Off-line handwritten word recognition (HWR) using a single contextual hidden Markov model","authors":"Mou-Yen Chen, A. Kundu, Jian Zhou","doi":"10.1109/CVPR.1992.223205","DOIUrl":null,"url":null,"abstract":"A complete scheme for totally unconstrained handwritten word recognition based on a single contextual hidden Markov model (HMM) is proposed. The scheme includes a morphology- and heuristics-based segmentation algorithm and a modified Viterbi algorithm that searches the (l+1)st globally best path based on the previous l best paths. The results of detailed experiments for which the overall recognition rate is up to 89.4% are reported.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

A complete scheme for totally unconstrained handwritten word recognition based on a single contextual hidden Markov model (HMM) is proposed. The scheme includes a morphology- and heuristics-based segmentation algorithm and a modified Viterbi algorithm that searches the (l+1)st globally best path based on the previous l best paths. The results of detailed experiments for which the overall recognition rate is up to 89.4% are reported.<>
离线手写字识别(HWR)使用单一上下文隐马尔可夫模型
提出了一种基于单一上下文隐马尔可夫模型(HMM)的完全无约束手写体单词识别方案。该方案包括基于形态学和启发式的分割算法和改进的Viterbi算法,该算法基于前l个最佳路径搜索(l+1)个全局最佳路径。详细的实验结果表明,总体识别率高达89.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信