Interactive exploratory data analysis

Sergey Malinchik, B. Orme, Joseph A. Rothermich, E. Bonabeau
{"title":"Interactive exploratory data analysis","authors":"Sergey Malinchik, B. Orme, Joseph A. Rothermich, E. Bonabeau","doi":"10.1109/CEC.2004.1330984","DOIUrl":null,"url":null,"abstract":"We illustrate with two simple examples how interactive evolutionary computation (IEC) can be applied to exploratory data analysis (EDA). IEC is particularly valuable in an EDA context because the objective function is by definite either unknown a priori or difficult to formalize. The first example IEC is used to evolve the \"true\" metric of attribute space. Indeed, the assumed distance function in attribute space strongly conditions the information content of a two-dimensional display of the data, regardless of the dimension reduction approach. The goal here is to evolve the attribute space distance function until \"interesting\" features of the data are revealed when a clustering algorithm is applied. In a second example, we show how a user can interactively evolve an auditory display of cluster data. In this example, we use IEC with genetic programming to evolve a mapping of data to sound functions in order to sonify qualities of data clusters.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1330984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We illustrate with two simple examples how interactive evolutionary computation (IEC) can be applied to exploratory data analysis (EDA). IEC is particularly valuable in an EDA context because the objective function is by definite either unknown a priori or difficult to formalize. The first example IEC is used to evolve the "true" metric of attribute space. Indeed, the assumed distance function in attribute space strongly conditions the information content of a two-dimensional display of the data, regardless of the dimension reduction approach. The goal here is to evolve the attribute space distance function until "interesting" features of the data are revealed when a clustering algorithm is applied. In a second example, we show how a user can interactively evolve an auditory display of cluster data. In this example, we use IEC with genetic programming to evolve a mapping of data to sound functions in order to sonify qualities of data clusters.
交互式探索性数据分析
我们用两个简单的例子来说明如何将交互式进化计算(IEC)应用于探索性数据分析(EDA)。IEC在EDA环境中特别有价值,因为目标函数要么是先验未知的,要么是难以形式化的。第一个示例IEC用于演化属性空间的“真实”度量。实际上,属性空间中假定的距离函数强烈地限制了数据二维显示的信息内容,而不管采用何种降维方法。这里的目标是演化属性空间距离函数,直到应用聚类算法时揭示数据的“有趣”特征。在第二个示例中,我们展示了用户如何以交互方式进化集群数据的听觉显示。在这个例子中,我们使用IEC和遗传编程来进化数据到声音函数的映射,以便对数据簇的质量进行声音化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信