Computing monodromy groups defined by plane algebraic curves

A. Poteaux
{"title":"Computing monodromy groups defined by plane algebraic curves","authors":"A. Poteaux","doi":"10.1145/1277500.1277509","DOIUrl":null,"url":null,"abstract":"We present a symbolic-numeric method to compute the monodromy group of a plane algebraic curve viewed as a ramified covering space of the complex plane. Following the definition, our algorithm is based on analytic continuation of algebraic functions above paths in the complex plane. Our contribution is three-fold : first of all, we show how to use a minimum spanning tree to minimize the length of paths ; then, we propose a strategy that gives a good compromise between the number of steps and the truncation orders of Puiseux expansions, obtaining for the first time a complexity result about the number of steps; finally, we present an efficient numerical-modular algorithm to compute Puiseux expansions above critical points,which is a non trivial task.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1277500.1277509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

We present a symbolic-numeric method to compute the monodromy group of a plane algebraic curve viewed as a ramified covering space of the complex plane. Following the definition, our algorithm is based on analytic continuation of algebraic functions above paths in the complex plane. Our contribution is three-fold : first of all, we show how to use a minimum spanning tree to minimize the length of paths ; then, we propose a strategy that gives a good compromise between the number of steps and the truncation orders of Puiseux expansions, obtaining for the first time a complexity result about the number of steps; finally, we present an efficient numerical-modular algorithm to compute Puiseux expansions above critical points,which is a non trivial task.
计算平面代数曲线定义的单群
给出了一种计算平面代数曲线的单群的符号-数值方法,并将其看作复平面的分枝覆盖空间。根据定义,我们的算法是基于上述代数函数在复平面上的解析延拓。我们的贡献有三个方面:首先,我们展示了如何使用最小生成树来最小化路径的长度;然后,我们提出了一种策略,在步数和Puiseux展开的截断顺序之间取得了很好的折衷,首次得到了一个关于步数的复杂度结果;最后,我们提出了一种有效的数值模算法来计算临界点以上的普塞展开式,这是一项非常重要的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信