{"title":"Computing monodromy groups defined by plane algebraic curves","authors":"A. Poteaux","doi":"10.1145/1277500.1277509","DOIUrl":null,"url":null,"abstract":"We present a symbolic-numeric method to compute the monodromy group of a plane algebraic curve viewed as a ramified covering space of the complex plane. Following the definition, our algorithm is based on analytic continuation of algebraic functions above paths in the complex plane. Our contribution is three-fold : first of all, we show how to use a minimum spanning tree to minimize the length of paths ; then, we propose a strategy that gives a good compromise between the number of steps and the truncation orders of Puiseux expansions, obtaining for the first time a complexity result about the number of steps; finally, we present an efficient numerical-modular algorithm to compute Puiseux expansions above critical points,which is a non trivial task.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1277500.1277509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
We present a symbolic-numeric method to compute the monodromy group of a plane algebraic curve viewed as a ramified covering space of the complex plane. Following the definition, our algorithm is based on analytic continuation of algebraic functions above paths in the complex plane. Our contribution is three-fold : first of all, we show how to use a minimum spanning tree to minimize the length of paths ; then, we propose a strategy that gives a good compromise between the number of steps and the truncation orders of Puiseux expansions, obtaining for the first time a complexity result about the number of steps; finally, we present an efficient numerical-modular algorithm to compute Puiseux expansions above critical points,which is a non trivial task.