M. Hedayati, A. Abdipour, R. S. Shirazi, M. John, M. Ammann, R. Staszewski
{"title":"A 38 GHz on-chip antenna in 28-nm CMOS using artificial magnetic conductor for 5G wireless systems","authors":"M. Hedayati, A. Abdipour, R. S. Shirazi, M. John, M. Ammann, R. Staszewski","doi":"10.21427/D7M23M","DOIUrl":null,"url":null,"abstract":"This paper presents the first-ever millimeter wave on-chip antenna (AoC) in 28 nm CMOS technology. The addition of artificial magnetic conductor (AMC) can increase the antenna's power gain and radiation efficiency to −1.75 dBi and 22%, respectively, with an occupied area of 0.95 mm×4.75 mm at 38 GHz. This structure is intended for fully integrated single-chip nanometer CMOS transceivers for 5G communication systems.","PeriodicalId":294709,"journal":{"name":"2016 Fourth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21427/D7M23M","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
This paper presents the first-ever millimeter wave on-chip antenna (AoC) in 28 nm CMOS technology. The addition of artificial magnetic conductor (AMC) can increase the antenna's power gain and radiation efficiency to −1.75 dBi and 22%, respectively, with an occupied area of 0.95 mm×4.75 mm at 38 GHz. This structure is intended for fully integrated single-chip nanometer CMOS transceivers for 5G communication systems.