Entropy Map Might Be Chaotic

Junping Hong, W. K. Chan
{"title":"Entropy Map Might Be Chaotic","authors":"Junping Hong, W. K. Chan","doi":"10.5220/0010469700860090","DOIUrl":null,"url":null,"abstract":"Chaos is a phenomenon observable in many areas. Chaotic behaviours can be visualized in chaotic maps, which are deterministic iterative functions and sensitive to initial conditions. As a result, they are wildly adopted in random number generator, image encryption, etc. In this paper, two new chaotic maps inspired by information entropy are proposed. Through bifurcation diagram and Lyapunov exponent analysis, period doubling bifurcations are observed and chaos is suggested. Furthermore, these maps lead to a special case of the FrobeniusPerron operator in their distributions and are extended to the complex plane to obtain the Julia set.","PeriodicalId":414016,"journal":{"name":"International Conference on Complex Information Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Complex Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010469700860090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Chaos is a phenomenon observable in many areas. Chaotic behaviours can be visualized in chaotic maps, which are deterministic iterative functions and sensitive to initial conditions. As a result, they are wildly adopted in random number generator, image encryption, etc. In this paper, two new chaotic maps inspired by information entropy are proposed. Through bifurcation diagram and Lyapunov exponent analysis, period doubling bifurcations are observed and chaos is suggested. Furthermore, these maps lead to a special case of the FrobeniusPerron operator in their distributions and are extended to the complex plane to obtain the Julia set.
熵图可能是混乱的
混沌是在许多领域都可以观察到的现象。混沌映射是一种确定性迭代函数,对初始条件敏感,混沌行为可以在混沌映射中可视化。因此被广泛应用于随机数生成、图像加密等领域。本文提出了两种基于信息熵的混沌映射。通过分岔图和李雅普诺夫指数分析,发现了周期加倍分岔,并提出了混沌现象。此外,这些映射在它们的分布中导致了FrobeniusPerron算子的一种特殊情况,并将其推广到复平面以得到Julia集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信