Mathematical Model for Single and Multiple Object Extraction

Amna Shujahuddin, Muhammad Salim Khan, Haider Ali
{"title":"Mathematical Model for Single and Multiple Object Extraction","authors":"Amna Shujahuddin, Muhammad Salim Khan, Haider Ali","doi":"10.52280/pujm.2021.530603","DOIUrl":null,"url":null,"abstract":"In the image processing, noise is referred to as the visual distortion. This undesirable by-product may be captured in\nan image due to unpreventable assorted reasons. The interference\nof natural phenomena and technical problem, such as small sensor\nsize, long exposure time, low ISO, shadow noise etc., can pollute\nimage. The presence of noise images affects image processing outputs that include segmentation. Segmentation for noisy images is\nthe major concern. To tackle this issue, we propose a modernistic\nmodel that is able neutralize the negative effects of outlier using\nthe characteristic of kernel function by different approaches such\nas linear approach and quadratic approach for global segmentation. Moreover the weight function is used for local segmentation\nof noisy images. Comparing with classical models, the proposed\ntechnique shows robust performance. In comparison with the wellknown models such as Chan-Vese (CV) model , Yongfei Wu and\nChuanjiang He (Wu-He) model and Chunming Li (Li) model we\nconclude that performance of our new model is much better.","PeriodicalId":205373,"journal":{"name":"Punjab University Journal of Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Punjab University Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52280/pujm.2021.530603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the image processing, noise is referred to as the visual distortion. This undesirable by-product may be captured in an image due to unpreventable assorted reasons. The interference of natural phenomena and technical problem, such as small sensor size, long exposure time, low ISO, shadow noise etc., can pollute image. The presence of noise images affects image processing outputs that include segmentation. Segmentation for noisy images is the major concern. To tackle this issue, we propose a modernistic model that is able neutralize the negative effects of outlier using the characteristic of kernel function by different approaches such as linear approach and quadratic approach for global segmentation. Moreover the weight function is used for local segmentation of noisy images. Comparing with classical models, the proposed technique shows robust performance. In comparison with the wellknown models such as Chan-Vese (CV) model , Yongfei Wu and Chuanjiang He (Wu-He) model and Chunming Li (Li) model we conclude that performance of our new model is much better.
单目标和多目标提取的数学模型
在图像处理中,噪声被称为视觉失真。由于各种不可预防的原因,这种不良的副产品可能会被捕捉到图像中。自然现象和技术问题的干扰,如传感器尺寸小、曝光时间长、ISO低、阴影噪声等,都会对图像造成污染。噪声图像的存在影响包括分割在内的图像处理输出。噪声图像的分割是主要问题。为了解决这个问题,我们提出了一个现代化的模型,该模型能够通过不同的方法,如线性方法和二次方法,利用核函数的特性来抵消离群值的负面影响。利用权函数对噪声图像进行局部分割。与经典模型相比,该方法具有较好的鲁棒性。通过与Chan-Vese (CV)模型、吴永飞和贺传江(Wu-He)模型以及李春明(Li)模型的比较,我们的新模型的性能有很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信