Fatma Ceren Yücel, Meryem Maras, Talat Kepezkaya, Elif Nur Ayvaz, A. Özen
{"title":"Artificial Intelligence Based Under Water Acoustic Channel Equalizer Design","authors":"Fatma Ceren Yücel, Meryem Maras, Talat Kepezkaya, Elif Nur Ayvaz, A. Özen","doi":"10.1109/SIU55565.2022.9864992","DOIUrl":null,"url":null,"abstract":"In this study, it is suggested to use artificial intelligence assisted fuzzy logic based LMS (F-LMS) algorithm to improve the performance of single carrier (SC) underwater acoustic communication (UWAC) systems in multipath underwater acoustic channel environments. Numerical simulation studies are carried out to compare the proposed F-LMS algorithm with the bit error rate (BER) and mean square error (MSE) performance measures over decision feedback equalizer (DFE) and channel matched filter DFE (CMF-DFE). From the produced numerical results, it is understood that the best gains are achieved in both MSE and BER simulations with the proposed F-LMS algorithm. In addition to these, the most important contribution of the proposed study is to eliminate the error floor that occurs in DFE equalizers in BER simulations with CMF-DFE equalizers.","PeriodicalId":115446,"journal":{"name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU55565.2022.9864992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, it is suggested to use artificial intelligence assisted fuzzy logic based LMS (F-LMS) algorithm to improve the performance of single carrier (SC) underwater acoustic communication (UWAC) systems in multipath underwater acoustic channel environments. Numerical simulation studies are carried out to compare the proposed F-LMS algorithm with the bit error rate (BER) and mean square error (MSE) performance measures over decision feedback equalizer (DFE) and channel matched filter DFE (CMF-DFE). From the produced numerical results, it is understood that the best gains are achieved in both MSE and BER simulations with the proposed F-LMS algorithm. In addition to these, the most important contribution of the proposed study is to eliminate the error floor that occurs in DFE equalizers in BER simulations with CMF-DFE equalizers.