Revisiting sorting for GPGPU stream architectures

D. Merrill, A. Grimshaw
{"title":"Revisiting sorting for GPGPU stream architectures","authors":"D. Merrill, A. Grimshaw","doi":"10.1145/1854273.1854344","DOIUrl":null,"url":null,"abstract":"This poster presents efficient strategies for sorting large sequences of fixed-length keys (and values) using GPGPU stream processors. Compared to the state-of-the-art, our radix sorting methods exhibit speedup of at least 2x for all generations of NVIDIA GPGPUs, and up to 3.7x for current GT200-based models. Our implementations demonstrate sorting rates of 482 million key-value pairs per second, and 550 million keys per second (32-bit). For this domain of sorting problems, we believe our sorting primitive to be the fastest available for any fully-programmable microarchitecture. These results motivate a different breed of parallel primitives for GPGPU stream architectures that can better exploit the memory and computational resources while maintaining the flexibility of a reusable component. Our sorting performance is derived from a parallel scan stream primitive that has been generalized in two ways: (1) with local interfaces for producer/consumer operations (visiting logic), and (2) with interfaces for performing multiple related, concurrent prefix scans (multi-scan).","PeriodicalId":422461,"journal":{"name":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"162","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1854273.1854344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 162

Abstract

This poster presents efficient strategies for sorting large sequences of fixed-length keys (and values) using GPGPU stream processors. Compared to the state-of-the-art, our radix sorting methods exhibit speedup of at least 2x for all generations of NVIDIA GPGPUs, and up to 3.7x for current GT200-based models. Our implementations demonstrate sorting rates of 482 million key-value pairs per second, and 550 million keys per second (32-bit). For this domain of sorting problems, we believe our sorting primitive to be the fastest available for any fully-programmable microarchitecture. These results motivate a different breed of parallel primitives for GPGPU stream architectures that can better exploit the memory and computational resources while maintaining the flexibility of a reusable component. Our sorting performance is derived from a parallel scan stream primitive that has been generalized in two ways: (1) with local interfaces for producer/consumer operations (visiting logic), and (2) with interfaces for performing multiple related, concurrent prefix scans (multi-scan).
回顾GPGPU流架构的排序
这张海报展示了使用GPGPU流处理器对固定长度键(和值)的大序列进行排序的有效策略。与最先进的技术相比,我们的基数排序方法在所有一代NVIDIA gpgpu上的速度至少提高了2倍,在当前基于gt200的模型上的速度最高可提高3.7倍。我们的实现演示了每秒4.82亿个键值对和每秒5.5亿个键(32位)的排序速率。对于这个排序问题领域,我们相信我们的排序原语是任何完全可编程的微体系结构中最快的。这些结果激发了GPGPU流架构的不同种类的并行原语,这些原语可以更好地利用内存和计算资源,同时保持可重用组件的灵活性。我们的排序性能来源于并行扫描流原语,该原语以两种方式进行了推广:(1)具有用于生产者/消费者操作(访问逻辑)的本地接口,以及(2)具有用于执行多个相关并发前缀扫描(多扫描)的接口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信