An Entropy Minimization Approach to Dialogue Segmentation

M. Gnjatović, N. Maček
{"title":"An Entropy Minimization Approach to Dialogue Segmentation","authors":"M. Gnjatović, N. Maček","doi":"10.1109/CogInfoCom50765.2020.9237832","DOIUrl":null,"url":null,"abstract":"This paper introduces an approach to segmentation of short dialogue fragments, based on the entropy of linguistic cues. Starting from the assumption that a dialogue fragment consists of two non-overlapping segments, the segment boundary is determined to minimize the maximum interactional entropy amongst the segments. The approach is evaluated on a corpus of 4500 artificially generated two-segment dialogues, each of which containing from 8 to 12 dialogue acts. In 29.20 percent of the dialogues, the detected segment boundary coincides with the actual segment boundary, and in 69.27 percent of the dialogues, the detected segment boundary either coincides with the actual boundary or is immediately preceded or succeeded by it.","PeriodicalId":236400,"journal":{"name":"2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CogInfoCom50765.2020.9237832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper introduces an approach to segmentation of short dialogue fragments, based on the entropy of linguistic cues. Starting from the assumption that a dialogue fragment consists of two non-overlapping segments, the segment boundary is determined to minimize the maximum interactional entropy amongst the segments. The approach is evaluated on a corpus of 4500 artificially generated two-segment dialogues, each of which containing from 8 to 12 dialogue acts. In 29.20 percent of the dialogues, the detected segment boundary coincides with the actual segment boundary, and in 69.27 percent of the dialogues, the detected segment boundary either coincides with the actual boundary or is immediately preceded or succeeded by it.
对话分割的熵最小化方法
介绍了一种基于语言线索熵的短对话片段分割方法。从假设对话片段由两个不重叠的片段组成开始,确定片段边界以最小化片段之间的最大交互熵。该方法在4500个人工生成的两段对话的语料库上进行了评估,每个对话包含8到12个对话行为。在29.20%的对话中,检测到的段边界与实际的段边界一致,在69.27%的对话中,检测到的段边界要么与实际的段边界一致,要么紧随在实际的段边界之前或之后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信