SVM Based Language Diarization for Code-Switched Bilingual Indian Speech Using Bottleneck Features

V. Spoorthy, Veena Thenkanidiyoor, Dileep Aroor Dinesh
{"title":"SVM Based Language Diarization for Code-Switched Bilingual Indian Speech Using Bottleneck Features","authors":"V. Spoorthy, Veena Thenkanidiyoor, Dileep Aroor Dinesh","doi":"10.21437/SLTU.2018-28","DOIUrl":null,"url":null,"abstract":"This paper proposes an SVM-based language diarizer for code-switched bilingual Indian speech. Code-switching corresponds to usage of more than one language within a single utterance. Language diarization involves identifying code-switch points in an utterance and segmenting it into homogeneous language segments. This is very important for Indian context because every Indian is at least bilingual and code-switching is inevitable. For building an effective language diarizer, it is helpful to consider phonotactic features. In this work, we propose to consider bottleneck features for language diarization. Bottleneck features correspond to output of a narrow hidden layer of a multilayer neural network trained to perform phone state classification. The studies conducted using the standard datasets have shown the effectiveness of the proposed approach.","PeriodicalId":190269,"journal":{"name":"Workshop on Spoken Language Technologies for Under-resourced Languages","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Spoken Language Technologies for Under-resourced Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SLTU.2018-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper proposes an SVM-based language diarizer for code-switched bilingual Indian speech. Code-switching corresponds to usage of more than one language within a single utterance. Language diarization involves identifying code-switch points in an utterance and segmenting it into homogeneous language segments. This is very important for Indian context because every Indian is at least bilingual and code-switching is inevitable. For building an effective language diarizer, it is helpful to consider phonotactic features. In this work, we propose to consider bottleneck features for language diarization. Bottleneck features correspond to output of a narrow hidden layer of a multilayer neural network trained to perform phone state classification. The studies conducted using the standard datasets have shown the effectiveness of the proposed approach.
基于瓶颈特征的码交换双语印度语支持向量机语言分类
本文提出了一种基于支持向量机的编码切换双语印度语日记器。语码转换是指在一个话语中使用一种以上的语言。语言分割是指识别话语中的语码转换点,并将其分割成同质的语言片段。这对印度语境来说非常重要,因为每个印度人至少都会说两种语言,代码转换是不可避免的。为了建立一个有效的语言日记,考虑语音特征是有帮助的。在这项工作中,我们建议考虑语言化的瓶颈特征。瓶颈特征对应于多层神经网络的窄隐藏层的输出,用于执行电话状态分类。使用标准数据集进行的研究显示了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信