Maximum Likelihood Optimization of Linear Frequency Modulated Signal Based on Particle Swarm

Xiaohui Yu, Xinbo Li, Yiran Shi, Xiaodong Sun, Shiqian Wang
{"title":"Maximum Likelihood Optimization of Linear Frequency Modulated Signal Based on Particle Swarm","authors":"Xiaohui Yu, Xinbo Li, Yiran Shi, Xiaodong Sun, Shiqian Wang","doi":"10.1109/ICSP48669.2020.9321091","DOIUrl":null,"url":null,"abstract":"The maximum likelihood estimation (MLE) is an optimal parameter estimation for the linear frequency modulated (LFM) signal. It can reach the Cramer-Rao lower bound. However, the great calculation load caused by multidimensional search limits its practical application. In this paper, the particle swarm optimization (PSO) algorithms based on the MLE of LFM parameters are proposed. Three different PSO algorithms, namely global mode standard PSO, local mode standard PSO, and hybrid PSO combined with global mode and local mode, are applied to optimize the MLE of LFM parameters. Through the updating of velocities and positions of the particles in multidimensional space, the estimation speed of chirp rate and initial frequency of LFM signal is accelerated effectively. The convergence performance, statistical performance and calculation time of the three PSO algorithms are compared by MATLAB experiments, through which the performance of the three optimization algorithms for LFM parameter estimation is analyzed.","PeriodicalId":237073,"journal":{"name":"2020 15th IEEE International Conference on Signal Processing (ICSP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th IEEE International Conference on Signal Processing (ICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSP48669.2020.9321091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The maximum likelihood estimation (MLE) is an optimal parameter estimation for the linear frequency modulated (LFM) signal. It can reach the Cramer-Rao lower bound. However, the great calculation load caused by multidimensional search limits its practical application. In this paper, the particle swarm optimization (PSO) algorithms based on the MLE of LFM parameters are proposed. Three different PSO algorithms, namely global mode standard PSO, local mode standard PSO, and hybrid PSO combined with global mode and local mode, are applied to optimize the MLE of LFM parameters. Through the updating of velocities and positions of the particles in multidimensional space, the estimation speed of chirp rate and initial frequency of LFM signal is accelerated effectively. The convergence performance, statistical performance and calculation time of the three PSO algorithms are compared by MATLAB experiments, through which the performance of the three optimization algorithms for LFM parameter estimation is analyzed.
基于粒子群的线性调频信号的最大似然优化
最大似然估计是线性调频信号的最优参数估计。它可以达到Cramer-Rao下界。然而,多维搜索带来的巨大计算量限制了其实际应用。提出了一种基于LFM参数最大似然估计的粒子群优化算法。采用全局模式标准粒子群算法、局部模式标准粒子群算法和全局模式与局部模式相结合的混合粒子群算法对LFM参数的最大似然度进行优化。通过粒子在多维空间中的速度和位置的更新,有效加快了线性调频信号啁啾率和初始频率的估计速度。通过MATLAB实验比较了三种PSO算法的收敛性能、统计性能和计算时间,分析了三种优化算法在LFM参数估计中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信