Water quality classification using neural networks: Case study of canals in Bangkok, Thailand

S. Areerachakul, S. Sanguansintukul
{"title":"Water quality classification using neural networks: Case study of canals in Bangkok, Thailand","authors":"S. Areerachakul, S. Sanguansintukul","doi":"10.1109/ICITST.2009.5402577","DOIUrl":null,"url":null,"abstract":"Water quality is one of the major concerns of countries around the world. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 3 chemical factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), and Biochemical Oxygen Demand (BOD). The methodology involves applying data mining techniques using neural networks with the Levenberg-Marquardt algorithm on data from 288 canals in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2003–2007. The results exhibit a high accuracy rate at 99.34% in classifying the water quality of canals in Bangkok. Subsequently, this encouraging result could be applied with more parameters and also can be extended to the related science.","PeriodicalId":251169,"journal":{"name":"2009 International Conference for Internet Technology and Secured Transactions, (ICITST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference for Internet Technology and Secured Transactions, (ICITST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITST.2009.5402577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Water quality is one of the major concerns of countries around the world. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 3 chemical factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), and Biochemical Oxygen Demand (BOD). The methodology involves applying data mining techniques using neural networks with the Levenberg-Marquardt algorithm on data from 288 canals in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2003–2007. The results exhibit a high accuracy rate at 99.34% in classifying the water quality of canals in Bangkok. Subsequently, this encouraging result could be applied with more parameters and also can be extended to the related science.
利用神经网络进行水质分类:以泰国曼谷运河为例
水质是世界各国关注的主要问题之一。本研究旨在对水质进行自动分类。采用3种化学因子指标对水质等级进行评价。这些因素是pH值(pH),溶解氧(DO)和生化需氧量(BOD)。该方法包括使用神经网络和Levenberg-Marquardt算法对泰国曼谷288条运河的数据进行数据挖掘技术。数据来自2003-2007年曼谷市政排水和污水处理部门。结果表明,该方法对曼谷地区水渠水质的分类准确率高达99.34%。随后,这一令人鼓舞的结果可以应用于更多的参数,也可以推广到相关科学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信