{"title":"Evolutionary radio resource management in distributed femtocell networks","authors":"Shangjing Lin, Wei Ni, Hui Tian, R. Liu","doi":"10.1109/ICT.2015.7124677","DOIUrl":null,"url":null,"abstract":"Femtocells are an integrating part of future cellular systems, where radio resource management is a challenge due to unbalanced backhaul delays and the hotspot nature of femtocells. We propose a new game theoretic framework, where the channel allocation and transmit powers evolve in a distributed manner, adapting to femtocells' topology and traffic demands. The key idea is to cast femtocells' clustering as an evolutionary game, where the femtocells independently switch to less interfered clusters. Within each cluster, we design a non-cooperative game to implement power control in the absence of centralized coordination. Simulations show that our approach is effective for timely interference mitigation and reliable topology management. The stability and scalability of our approach are also demonstrated.","PeriodicalId":375669,"journal":{"name":"2015 22nd International Conference on Telecommunications (ICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 22nd International Conference on Telecommunications (ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2015.7124677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Femtocells are an integrating part of future cellular systems, where radio resource management is a challenge due to unbalanced backhaul delays and the hotspot nature of femtocells. We propose a new game theoretic framework, where the channel allocation and transmit powers evolve in a distributed manner, adapting to femtocells' topology and traffic demands. The key idea is to cast femtocells' clustering as an evolutionary game, where the femtocells independently switch to less interfered clusters. Within each cluster, we design a non-cooperative game to implement power control in the absence of centralized coordination. Simulations show that our approach is effective for timely interference mitigation and reliable topology management. The stability and scalability of our approach are also demonstrated.