Classification of lung nodules and arteries in computed tomography scan image using principle component analysis

S. Widodo, Ratnasari Nur Rohmah, B. Handaga
{"title":"Classification of lung nodules and arteries in computed tomography scan image using principle component analysis","authors":"S. Widodo, Ratnasari Nur Rohmah, B. Handaga","doi":"10.1109/ICITISEE.2017.8285485","DOIUrl":null,"url":null,"abstract":"There is still a lack of a good method of diagnosing pulmonary nodules in CT Scan automatically, causing medical staff to observe a 2-D CT Scan data manually and interpreting data one by one. This procedure is course less effective. In addition, lung specialists may differ in determining pulmonary nodules. The purpose of this research is to classify pulmonary nodules and artery automatically on chest Ct Scan image using Principle Component Analysis (PCA). This study includes 3 steps. The first is lung organ segmentation using Active Appearance Model (AAM). The second step is segmentation of candidate nodules using morphological math. While the last step is classification of pulmonary nodules and artery using Principle Component Analysis method. The output from classification process is image of nodule and artery. Results of testing, obtained the performance of classification system accuracy is 90%.","PeriodicalId":130873,"journal":{"name":"2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITISEE.2017.8285485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

There is still a lack of a good method of diagnosing pulmonary nodules in CT Scan automatically, causing medical staff to observe a 2-D CT Scan data manually and interpreting data one by one. This procedure is course less effective. In addition, lung specialists may differ in determining pulmonary nodules. The purpose of this research is to classify pulmonary nodules and artery automatically on chest Ct Scan image using Principle Component Analysis (PCA). This study includes 3 steps. The first is lung organ segmentation using Active Appearance Model (AAM). The second step is segmentation of candidate nodules using morphological math. While the last step is classification of pulmonary nodules and artery using Principle Component Analysis method. The output from classification process is image of nodule and artery. Results of testing, obtained the performance of classification system accuracy is 90%.
用主成分分析法对计算机断层扫描图像中的肺结节和动脉进行分类
在CT扫描中仍然缺乏一种很好的自动诊断肺结节的方法,导致医护人员只能手工观察二维CT扫描数据,并逐一解释数据。这种方法当然不太有效。此外,肺专家在确定肺结节方面可能会有所不同。本研究的目的是利用主成分分析(PCA)对胸部Ct扫描图像中的肺结节和动脉进行自动分类。本研究包括3个步骤。首先是利用活动外观模型(AAM)进行肺器官分割。第二步是利用形态数学对候选结节进行分割。最后一步是用主成分分析法对肺结节和动脉进行分类。分类过程的输出是结节和动脉的图像。测试结果表明,所获得的分类系统的性能准确率为90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信