Reinforcement learning in a spiking neural network with memristive plasticity

D. Vlasov, R. Rybka, A. Sboev, A. Serenko, A. Minnekhanov, V. A. Demin
{"title":"Reinforcement learning in a spiking neural network with memristive plasticity","authors":"D. Vlasov, R. Rybka, A. Sboev, A. Serenko, A. Minnekhanov, V. A. Demin","doi":"10.1109/DCNA56428.2022.9923314","DOIUrl":null,"url":null,"abstract":"The reinforcement learning paradigm is for the first time presented for spiking neural network architecture with memristor-based local dynamic plasticity. The models of two kinds of such plasticity are used in the simulation study of the Cartpole task. Applying the Gaussian receptive field time-encoding scheme and simple reinforcing current pulses determined by the sign of reward change, the successful learning is demonstrated for both types of memristive plasticity.","PeriodicalId":110836,"journal":{"name":"2022 6th Scientific School Dynamics of Complex Networks and their Applications (DCNA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th Scientific School Dynamics of Complex Networks and their Applications (DCNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCNA56428.2022.9923314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The reinforcement learning paradigm is for the first time presented for spiking neural network architecture with memristor-based local dynamic plasticity. The models of two kinds of such plasticity are used in the simulation study of the Cartpole task. Applying the Gaussian receptive field time-encoding scheme and simple reinforcing current pulses determined by the sign of reward change, the successful learning is demonstrated for both types of memristive plasticity.
具有记忆可塑性的尖峰神经网络的强化学习
本文首次提出了基于记忆电阻局部动态可塑性的尖峰神经网络结构的强化学习范式。采用两种塑性模型对Cartpole任务进行了仿真研究。采用高斯接受野时间编码方案和由奖励变化符号决定的简单强化电流脉冲,证明了两种记忆可塑性的成功学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信