Progress and Error Dependencies of Matched Filter Maximum Cyclone Wind Retrievals Using CYGNSS

Mohammad M. Al-Khaldi, J. Johnson, S. Katzberg, Young-Heac Kang, E. Kubatko, S. Gleason
{"title":"Progress and Error Dependencies of Matched Filter Maximum Cyclone Wind Retrievals Using CYGNSS","authors":"Mohammad M. Al-Khaldi, J. Johnson, S. Katzberg, Young-Heac Kang, E. Kubatko, S. Gleason","doi":"10.23919/USNC-URSIRSM52661.2021.9552358","DOIUrl":null,"url":null,"abstract":"This presentation reports on progress relating to a storm characterization approach using spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) measurements from the Cyclone Global Navigation Satellite System (CYGNSS) mission. The retrieval concept is based on the use of a forward model for CYGNSS returns, which can produce predicted waveforms for parametric storm models having varying storm features, with particular emphasis placed on the storm maximum wind speed. A “matched filter” approach is then adopted by correlating predicted returns with those observed throughout an entire CYGNSS overpass of a storm; the correlation is performed between predicted and measured DDMs normalized by their root-mean-square (RMS) amplitudes. Storm parameters producing the maximum correlation and minimum RMS error (RMSE) values are then designated the retrieved value from which a complete parametric wind field for storm surge simulation can be generated. It is noted that the utility of this formulation is not limited to tracks passing through the storm eye, making “near-miss” tracks equally usable for attempting to retrieve storm information.","PeriodicalId":365284,"journal":{"name":"2021 USNC-URSI Radio Science Meeting (USCN-URSI RSM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 USNC-URSI Radio Science Meeting (USCN-URSI RSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC-URSIRSM52661.2021.9552358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This presentation reports on progress relating to a storm characterization approach using spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) measurements from the Cyclone Global Navigation Satellite System (CYGNSS) mission. The retrieval concept is based on the use of a forward model for CYGNSS returns, which can produce predicted waveforms for parametric storm models having varying storm features, with particular emphasis placed on the storm maximum wind speed. A “matched filter” approach is then adopted by correlating predicted returns with those observed throughout an entire CYGNSS overpass of a storm; the correlation is performed between predicted and measured DDMs normalized by their root-mean-square (RMS) amplitudes. Storm parameters producing the maximum correlation and minimum RMS error (RMSE) values are then designated the retrieved value from which a complete parametric wind field for storm surge simulation can be generated. It is noted that the utility of this formulation is not limited to tracks passing through the storm eye, making “near-miss” tracks equally usable for attempting to retrieve storm information.
CYGNSS匹配滤波器最大气旋风反演的进展与误差依赖关系
本报告报告了利用旋风全球导航卫星系统(CYGNSS)任务的星载全球导航卫星系统反射测量(GNSS-R)测量风暴表征方法的进展。检索概念基于对CYGNSS回波的正演模型的使用,该模型可以为具有不同风暴特征的参数风暴模型生成预测波形,特别强调风暴的最大风速。然后采用“匹配过滤”方法,将预测回波与整个CYGNSS风暴立交桥的观测回波相关联;通过均方根(RMS)振幅归一化预测和测量DDMs之间的相关性。然后将产生最大相关值和最小均方根误差(RMSE)值的风暴参数指定为检索值,从而生成用于风暴潮模拟的完整参数风场。值得注意的是,这个公式的效用并不局限于通过风暴眼的轨迹,使得“差一点”的轨迹同样可用于试图检索风暴信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信