Elastic neural net algorithm for cluster analysis

R. Salvini, L. A. V. Carvalho
{"title":"Elastic neural net algorithm for cluster analysis","authors":"R. Salvini, L. A. V. Carvalho","doi":"10.1109/SBRN.2000.889737","DOIUrl":null,"url":null,"abstract":"Proposes a method for data clustering in a n-dimensional space using the elastic net algorithm which is a variant of the Kohonen topographic map learning algorithm. The elastic net algorithm is a mechanical metaphor in which an elastic ring is attracted by points in a bi-dimensional space while their internal elastic forces try to shun the elastic expansion. The different weights associated with these two kinds of forces lead the elastic to a gradual expansion in the direction of the bi-dimensional points. In this method, the elastic net algorithm is employed with the help of a heuristic framework that improves its performance for application in the n-dimensional space of cluster analysis. Tests were made with two types of data sets: (1) simulated data sets with up to 1000 points randomly generated in groups linearly separable with up to dimension 10 and (2) the Fisher Iris Plant database, a well-known database referred to in the pattern recognition literature. The advantages of the method presented are its simplicity, its fast and stable convergence, beyond efficiency in cluster analysis.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Proposes a method for data clustering in a n-dimensional space using the elastic net algorithm which is a variant of the Kohonen topographic map learning algorithm. The elastic net algorithm is a mechanical metaphor in which an elastic ring is attracted by points in a bi-dimensional space while their internal elastic forces try to shun the elastic expansion. The different weights associated with these two kinds of forces lead the elastic to a gradual expansion in the direction of the bi-dimensional points. In this method, the elastic net algorithm is employed with the help of a heuristic framework that improves its performance for application in the n-dimensional space of cluster analysis. Tests were made with two types of data sets: (1) simulated data sets with up to 1000 points randomly generated in groups linearly separable with up to dimension 10 and (2) the Fisher Iris Plant database, a well-known database referred to in the pattern recognition literature. The advantages of the method presented are its simplicity, its fast and stable convergence, beyond efficiency in cluster analysis.
聚类分析的弹性神经网络算法
提出了一种基于Kohonen地形图学习算法的弹性网算法在n维空间中聚类数据的方法。弹性网算法是一种力学隐喻,其中弹性环被二维空间中的点所吸引,而它们的内部弹性力试图避免弹性膨胀。与这两种力相关的不同重量导致弹性在二维点方向上逐渐膨胀。该方法在启发式框架的帮助下采用弹性网络算法,提高了其在n维聚类分析空间中的应用性能。使用两种类型的数据集进行了测试:(1)模拟数据集,其中多达1000个点随机生成,在维度为10的线性可分组中;(2)Fisher Iris Plant数据库,这是模式识别文献中提到的一个知名数据库。该方法具有简单、收敛速度快、稳定性好、提高聚类分析效率等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信