Comparing Methods for Estimating Demographics in Racially Polarized Voting Analyses

Ari Decter-Frain, Pratik S. Sachdeva, Loren Collingwood, Hikari Murayama, Juandalyn Burke, M. Barreto, Scott Henderson, Spencer Wood, Joshua N. Zingher
{"title":"Comparing Methods for Estimating Demographics in Racially Polarized Voting Analyses","authors":"Ari Decter-Frain, Pratik S. Sachdeva, Loren Collingwood, Hikari Murayama, Juandalyn Burke, M. Barreto, Scott Henderson, Spencer Wood, Joshua N. Zingher","doi":"10.1177/00491241231192383","DOIUrl":null,"url":null,"abstract":"We consider the cascading effects of researcher decisions throughout the process of quantifying racially polarized voting (RPV). We contrast three methods of estimating precinct racial composition, Bayesian Improved Surname Geocoding (BISG), fully Bayesian BISG, and Citizen Voting Age Population (CVAP), and two algorithms for performing ecological inference (EI), King’s EI and EI:RxC using eiCompare. Using data from two different elections we identify circumstances in which different combinations of methods produce divergent results, comparing against ground-truth data where available. We first find that BISG outperforms CVAP at estimating racial composition, though fully Bayesian BISG does not yield further improvements. Next, in a statewide election, we find that all combinations of methods yield similarly reliable estimates of RPV. However, county-level analyses and results from a non-partisan school board election reveal that BISG and CVAP produce divergent estimates of Black preferences in elections with low turnout and few precincts. Our results suggest that methodological choices can meaningfully alter conclusions about RPV, particularly in smaller, low-turnout elections.","PeriodicalId":286027,"journal":{"name":"Sociological Methods & Research","volume":"06 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methods & Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00491241231192383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We consider the cascading effects of researcher decisions throughout the process of quantifying racially polarized voting (RPV). We contrast three methods of estimating precinct racial composition, Bayesian Improved Surname Geocoding (BISG), fully Bayesian BISG, and Citizen Voting Age Population (CVAP), and two algorithms for performing ecological inference (EI), King’s EI and EI:RxC using eiCompare. Using data from two different elections we identify circumstances in which different combinations of methods produce divergent results, comparing against ground-truth data where available. We first find that BISG outperforms CVAP at estimating racial composition, though fully Bayesian BISG does not yield further improvements. Next, in a statewide election, we find that all combinations of methods yield similarly reliable estimates of RPV. However, county-level analyses and results from a non-partisan school board election reveal that BISG and CVAP produce divergent estimates of Black preferences in elections with low turnout and few precincts. Our results suggest that methodological choices can meaningfully alter conclusions about RPV, particularly in smaller, low-turnout elections.
种族极化投票分析中人口统计估计方法的比较
在量化种族极化投票(RPV)的过程中,我们考虑了研究者决策的级联效应。我们对比了三种估计选区种族构成的方法,即贝叶斯改进姓氏地理编码(BISG)、全贝叶斯地理编码(BISG)和公民投票年龄人口(CVAP),以及两种执行生态推理(EI)的算法,即King 's EI和EI:RxC。使用来自两次不同选举的数据,我们确定了不同方法组合产生不同结果的情况,并与现有的真实数据进行比较。我们首先发现BISG在估计种族构成方面优于CVAP,尽管完全贝叶斯BISG并没有产生进一步的改进。接下来,在全州范围的选举中,我们发现所有方法的组合都产生了类似的可靠的RPV估计。然而,县级分析和无党派学校董事会选举的结果表明,在投票率低、选区少的选举中,BISG和CVAP对黑人偏好的估计存在分歧。我们的研究结果表明,方法选择可以有意地改变关于RPV的结论,特别是在较小的、低投票率的选举中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信