{"title":"Microbial technologies: Toward a regenerative architecture","authors":"Rachel Armstrong","doi":"10.36922/jcau.157","DOIUrl":null,"url":null,"abstract":"This paper examines the applications of microbial technologies in regenerative architecture, which enliven the built environment and its territories by establishing a different relationship between waste, energy, human inhabitation, and microbial “life.” The specific platform discussed is centered on the microbial fuel cell (an ecologically “just” platform that provides bioelectrical energy, data, and chemical transformation from human waste streams), which are exemplified by a range of demonstrators that establish transactional systems between humans and microbes. These simultaneously “sustainable” and “smart” demonstrators establish operational principles for the wider deployment and uptake of microbial technologies in an urban context. The city-scale implementations of these regenerative systems have the potential to establish the foundations for “living cities,” which are fundamentally bioremediating, resulting in an overall increase in liveliness of our habitats and living spaces.","PeriodicalId":429385,"journal":{"name":"Journal of Chinese Architecture and Urbanism","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chinese Architecture and Urbanism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36922/jcau.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper examines the applications of microbial technologies in regenerative architecture, which enliven the built environment and its territories by establishing a different relationship between waste, energy, human inhabitation, and microbial “life.” The specific platform discussed is centered on the microbial fuel cell (an ecologically “just” platform that provides bioelectrical energy, data, and chemical transformation from human waste streams), which are exemplified by a range of demonstrators that establish transactional systems between humans and microbes. These simultaneously “sustainable” and “smart” demonstrators establish operational principles for the wider deployment and uptake of microbial technologies in an urban context. The city-scale implementations of these regenerative systems have the potential to establish the foundations for “living cities,” which are fundamentally bioremediating, resulting in an overall increase in liveliness of our habitats and living spaces.