Brane Topological Field Theory and Hurwitz numbers for CW-complexes

S. Natanzon
{"title":"Brane Topological Field Theory and Hurwitz numbers for CW-complexes","authors":"S. Natanzon","doi":"10.4171/irma/33-1/13","DOIUrl":null,"url":null,"abstract":"We expand Topological Field Theory on some special CW-complexes (brane complexes). This Brane Topological Field Theory one-to-one corresponds to infinite dimensional Frobenius Algebras, graduated by CW-complexes of lesser dimension. We define general and regular Hurwitz numbers of brane complexes and prove that they generate Brane Topological Field Theories. For general Hurwitz numbers corresponding algebra is an algebra of coverings of lesser dimension. For regular Hurwitz numbers the Frobenius algebra is an algebra of families of subgroups of finite groups.","PeriodicalId":270093,"journal":{"name":"Topology and Geometry","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/irma/33-1/13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We expand Topological Field Theory on some special CW-complexes (brane complexes). This Brane Topological Field Theory one-to-one corresponds to infinite dimensional Frobenius Algebras, graduated by CW-complexes of lesser dimension. We define general and regular Hurwitz numbers of brane complexes and prove that they generate Brane Topological Field Theories. For general Hurwitz numbers corresponding algebra is an algebra of coverings of lesser dimension. For regular Hurwitz numbers the Frobenius algebra is an algebra of families of subgroups of finite groups.
cw -配合物的膜拓扑场论和Hurwitz数
本文在一些特殊的膜配合物上扩展了拓扑场理论。这种膜拓扑场论一对一地对应于无限维Frobenius代数,由较小维数的cw -配合物分度。定义了膜配合物的一般和正则Hurwitz数,并证明了它们产生了膜拓扑场论。对于一般的Hurwitz数,对应代数是一种小维数覆盖的代数。对于正则Hurwitz数,Frobenius代数是有限群的子群族的代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信