Vehicle speed estimation using extracted SURF features from stereo images

Abderrahim El Bouziady, R. Thami, M. Ghogho, Omar Bourja, S. El Fkihi
{"title":"Vehicle speed estimation using extracted SURF features from stereo images","authors":"Abderrahim El Bouziady, R. Thami, M. Ghogho, Omar Bourja, S. El Fkihi","doi":"10.1109/ISACV.2018.8354040","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel technique to estimate vehicle speed on highway using stereo images. First, traffic images are captured using calibrated and synchronized stereo cameras, then we detect moving vehicles on the left image by subtracting the background image. On each detected vehicle, we extract and match Speed Up Robust Features (SURF) in order to compute sparse depth maps. Finally, we get vehicle speed from vehicle depth variation using some geometric derivations. The experiments shows that the proposed algorithm has a satisfactory estimation of vehicle speed comparing to GPS ground truth with a speed error of 2 Km/h in the Moroccan environment.","PeriodicalId":184662,"journal":{"name":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACV.2018.8354040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this paper, we present a novel technique to estimate vehicle speed on highway using stereo images. First, traffic images are captured using calibrated and synchronized stereo cameras, then we detect moving vehicles on the left image by subtracting the background image. On each detected vehicle, we extract and match Speed Up Robust Features (SURF) in order to compute sparse depth maps. Finally, we get vehicle speed from vehicle depth variation using some geometric derivations. The experiments shows that the proposed algorithm has a satisfactory estimation of vehicle speed comparing to GPS ground truth with a speed error of 2 Km/h in the Moroccan environment.
从立体图像中提取SURF特征进行车速估计
本文提出了一种利用立体图像估计高速公路上车辆速度的新方法。首先,使用校准和同步的立体摄像机捕获交通图像,然后通过减去背景图像来检测左侧图像上的移动车辆。在每个检测到的车辆上,我们提取和匹配加速鲁棒特征(SURF)以计算稀疏深度图。最后,利用几何导数从车辆深度变化中得到车速。实验表明,在摩洛哥环境下,与GPS地面真值相比,该算法具有较好的车速估计效果,车速误差为2 Km/h。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信