Statistical Racing Crossover Based Genetic Algorithm for Vehicle Routing Problem

Ákos Holló-Szabó, I. Albert, J. Botzheim
{"title":"Statistical Racing Crossover Based Genetic Algorithm for Vehicle Routing Problem","authors":"Ákos Holló-Szabó, I. Albert, J. Botzheim","doi":"10.1109/CINTI53070.2021.9668496","DOIUrl":null,"url":null,"abstract":"Genetic algorithms are modular metaheuristics simulating the evolutionary process over a solution set. The optimization is very adaptive but slow, making statistical research difficult. In this paper an algorithm is proposed where different variants are racing against each other while statistics are gathered. Our results show that this algorithm is an efficient, standalone, and even more adaptive solution. Those variants that result in faster convergence lead the race, but get stuck in local minima. In these cases, the more agile combinations with slower convergence gain higher probability and find better solutions farther from the local minimum. The hybrid is capable of faster convergence with minimal additional runtime. We also provide complexity estimations for resource requirements.","PeriodicalId":340545,"journal":{"name":"2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI53070.2021.9668496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Genetic algorithms are modular metaheuristics simulating the evolutionary process over a solution set. The optimization is very adaptive but slow, making statistical research difficult. In this paper an algorithm is proposed where different variants are racing against each other while statistics are gathered. Our results show that this algorithm is an efficient, standalone, and even more adaptive solution. Those variants that result in faster convergence lead the race, but get stuck in local minima. In these cases, the more agile combinations with slower convergence gain higher probability and find better solutions farther from the local minimum. The hybrid is capable of faster convergence with minimal additional runtime. We also provide complexity estimations for resource requirements.
基于统计赛车交叉的遗传算法求解车辆路径问题
遗传算法是模拟解决方案集上的进化过程的模块化元启发式算法。这种优化方法适应性强,但速度慢,给统计研究带来困难。本文提出了一种算法,其中不同的变体在收集统计数据时相互竞争。我们的结果表明,该算法是一种高效、独立、甚至更具适应性的解决方案。那些导致更快收敛的变体在竞争中处于领先地位,但却陷入了局部最小值。在这些情况下,收敛速度较慢的更灵活的组合获得更高的概率,并找到离局部最小值更远的更好的解。这种混合算法能够以最小的额外运行时间更快地收敛。我们还提供了资源需求的复杂性估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信