Edge Intelligence for Detecting Deviations in Batch-based Industrial Processes

Alexander Keusch, Thomas Hiessl, M. Joksch, Axel Sündermann, Daniel Schall, Stefan Schulte
{"title":"Edge Intelligence for Detecting Deviations in Batch-based Industrial Processes","authors":"Alexander Keusch, Thomas Hiessl, M. Joksch, Axel Sündermann, Daniel Schall, Stefan Schulte","doi":"10.1109/INDIN51400.2023.10217845","DOIUrl":null,"url":null,"abstract":"Monitoring of batch production processes is complex and existing solutions do not offer good performance in providing real-time feedback about the state of the process. Therefore, we introduce an AI system that monitors a fermentation process and detects deviations from the normal process execution directly on the edge and provides real-time feedback to the operator, allowing intervention before the process gets out of control. We analyze the accuracy of the novel AI-based approach by carrying out several experiments and compare the outcome with statistical methods as a baseline. The experiments show that the AI-based approach performs significantly better at detecting anomalies in a fermentation process than the statistical methods.","PeriodicalId":174443,"journal":{"name":"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51400.2023.10217845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring of batch production processes is complex and existing solutions do not offer good performance in providing real-time feedback about the state of the process. Therefore, we introduce an AI system that monitors a fermentation process and detects deviations from the normal process execution directly on the edge and provides real-time feedback to the operator, allowing intervention before the process gets out of control. We analyze the accuracy of the novel AI-based approach by carrying out several experiments and compare the outcome with statistical methods as a baseline. The experiments show that the AI-based approach performs significantly better at detecting anomalies in a fermentation process than the statistical methods.
基于批处理的工业过程偏差检测的边缘智能
批量生产过程的监控是复杂的,现有的解决方案在提供有关过程状态的实时反馈方面没有提供良好的性能。因此,我们引入了一种人工智能系统,该系统可以监控发酵过程,并直接在边缘检测正常过程执行的偏差,并向操作员提供实时反馈,从而在过程失控之前进行干预。我们通过进行几个实验来分析基于人工智能的新方法的准确性,并将结果与统计方法作为基线进行比较。实验表明,基于人工智能的方法在检测发酵过程中的异常方面明显优于统计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信