Sentimental analysis using fuzzy and naive bayes

Ruchi Mehra, M. Bedi, Gagandeep Singh, Raman Arora, Tannu Bala, Sunny Saxena
{"title":"Sentimental analysis using fuzzy and naive bayes","authors":"Ruchi Mehra, M. Bedi, Gagandeep Singh, Raman Arora, Tannu Bala, Sunny Saxena","doi":"10.1109/ICCMC.2017.8282607","DOIUrl":null,"url":null,"abstract":"Sentimental Analysis is the best way to judge people's opinion regarding a particular post. In this paper we present analysis for sentiment behavior of Twitter data. The proposed work utilizes the naive Bayes and fuzzy Classifier to classify Tweets into positive, negative or neural behavior of a particular person. We present experimental evaluation of our dataset and classification results which proved that combined proposed method is more efficient in terms of Accuracy, Precision and Recall.","PeriodicalId":163288,"journal":{"name":"2017 International Conference on Computing Methodologies and Communication (ICCMC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC.2017.8282607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Sentimental Analysis is the best way to judge people's opinion regarding a particular post. In this paper we present analysis for sentiment behavior of Twitter data. The proposed work utilizes the naive Bayes and fuzzy Classifier to classify Tweets into positive, negative or neural behavior of a particular person. We present experimental evaluation of our dataset and classification results which proved that combined proposed method is more efficient in terms of Accuracy, Precision and Recall.
使用模糊贝叶斯和朴素贝叶斯进行情感分析
情感分析是判断人们对特定职位看法的最佳方式。本文对Twitter数据的情感行为进行了分析。提出的工作利用朴素贝叶斯和模糊分类器将推文分类为特定的人的积极,消极或神经行为。我们对数据集和分类结果进行了实验评估,证明了该方法在准确率、精密度和召回率方面具有更高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信