Consensus clustering for dimensionality reduction

Sandhya Rani, Sobha Rani, Durga Bhavani
{"title":"Consensus clustering for dimensionality reduction","authors":"Sandhya Rani, Sobha Rani, Durga Bhavani","doi":"10.1109/IC3.2014.6897164","DOIUrl":null,"url":null,"abstract":"Dimensionality reduction continues to be a challenging problem with huge amounts of data being generated in the domains of bio-informatics, social networks etc. We propose a novel dimensionality reduction algorithm based on the idea of consensus clustering using genetic algorithms. Classification is used as validation and the algorithm is evaluated on benchmark data sets of dimensionality ranging from 8 to 617 features. The results are on par with the latest approaches proposed in the literature.","PeriodicalId":444918,"journal":{"name":"2014 Seventh International Conference on Contemporary Computing (IC3)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Seventh International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2014.6897164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dimensionality reduction continues to be a challenging problem with huge amounts of data being generated in the domains of bio-informatics, social networks etc. We propose a novel dimensionality reduction algorithm based on the idea of consensus clustering using genetic algorithms. Classification is used as validation and the algorithm is evaluated on benchmark data sets of dimensionality ranging from 8 to 617 features. The results are on par with the latest approaches proposed in the literature.
降维的一致聚类
在生物信息学、社交网络等领域中,随着大量数据的产生,降维仍然是一个具有挑战性的问题。基于遗传算法的共识聚类思想,提出了一种新的降维算法。使用分类作为验证,并在8到617个特征的基准数据集上对算法进行评估。研究结果与文献中提出的最新方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信