Z. Allam, A. Hamdoune, A. Soufi, Chahrazed Boudaoud
{"title":"High-performance solar-blind photodetector based on AlGaN/GaN heterostructure","authors":"Z. Allam, A. Hamdoune, A. Soufi, Chahrazed Boudaoud","doi":"10.1109/NAWDMPV.2014.6997616","DOIUrl":null,"url":null,"abstract":"Development of wide-band gap III-nitride semiconductors has been a subject of intense focus since the 1990s, primarily driven by the quest for blue lasers and high-brightness light-emitting diodes (LEDs). In parallel, III-nitrides have been studied extensively for use in ultraviolet (UV) photodetectors because they offer intrinsic visible- or solar-blind detection, which would eliminate the need for expensive and efficiency-limiting optical filters to remove out-of-band visible or solar photons. Such detectors would be well suited for numerous applications in the defense, commercial, and scientific arenas, including covert space-to-space communications, early missile-threat detection, chemical and biological threat detection and spectroscopy, flame detection and monitoring, UV environmental monitoring, and UV astronomy. In this paper, we considered an AlGaN/GaN photodetector grown on sapphire substrate. We studied I-V characteristics and we simulated the current as a function of voltage in darkness; we got a dark current of order 10-7 for a concentration of 1e19 cm-3. In the spectral response, we obtained a high current and flux spectral density for a wavelength of 350 nm for different x.","PeriodicalId":149945,"journal":{"name":"2014 North African Workshop on Dielectic Materials for Photovoltaic Systems (NAWDMPV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 North African Workshop on Dielectic Materials for Photovoltaic Systems (NAWDMPV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAWDMPV.2014.6997616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Development of wide-band gap III-nitride semiconductors has been a subject of intense focus since the 1990s, primarily driven by the quest for blue lasers and high-brightness light-emitting diodes (LEDs). In parallel, III-nitrides have been studied extensively for use in ultraviolet (UV) photodetectors because they offer intrinsic visible- or solar-blind detection, which would eliminate the need for expensive and efficiency-limiting optical filters to remove out-of-band visible or solar photons. Such detectors would be well suited for numerous applications in the defense, commercial, and scientific arenas, including covert space-to-space communications, early missile-threat detection, chemical and biological threat detection and spectroscopy, flame detection and monitoring, UV environmental monitoring, and UV astronomy. In this paper, we considered an AlGaN/GaN photodetector grown on sapphire substrate. We studied I-V characteristics and we simulated the current as a function of voltage in darkness; we got a dark current of order 10-7 for a concentration of 1e19 cm-3. In the spectral response, we obtained a high current and flux spectral density for a wavelength of 350 nm for different x.