{"title":"Safety and reliability of deep learning: (brief overview)","authors":"Xiaowei Huang","doi":"10.1145/3459086.3459636","DOIUrl":null,"url":null,"abstract":"Robotics and Autonomous Systems (RAS) become ever more relying on deep learning components to support their perception and decision making. Given RAS will inevitably be applied to safety critical applications, efforts are needed to ensure that the deep learning is safe and reliable. In this lecture, I will give a brief overview on recent progress in the verification and validation techniques for deep learning, focusing on two major safety and reliability risks, i.e., robustness and generalisation. We consider formal verification, statistical evaluation, reliability assessment, and runtime monitoring techniques, all of which complement with each other in providing assurance to the reliability of deep learning in operation. The challenges and future directions will also be discussed.","PeriodicalId":127610,"journal":{"name":"Proceedings of the 1st International Workshop on Verification of Autonomous & Robotic Systems","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Workshop on Verification of Autonomous & Robotic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459086.3459636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Robotics and Autonomous Systems (RAS) become ever more relying on deep learning components to support their perception and decision making. Given RAS will inevitably be applied to safety critical applications, efforts are needed to ensure that the deep learning is safe and reliable. In this lecture, I will give a brief overview on recent progress in the verification and validation techniques for deep learning, focusing on two major safety and reliability risks, i.e., robustness and generalisation. We consider formal verification, statistical evaluation, reliability assessment, and runtime monitoring techniques, all of which complement with each other in providing assurance to the reliability of deep learning in operation. The challenges and future directions will also be discussed.