Basic probability theory

T. Trappenberg
{"title":"Basic probability theory","authors":"T. Trappenberg","doi":"10.1093/oso/9780198828044.003.0006","DOIUrl":null,"url":null,"abstract":"The discussion provides a refresher of probability theory, in particular with respect to the formulations that build the theoretical language of modern machine learning. Probability theory is the formalism of random numbers, and this chapter outlines what these are and how they are characterized by probability density or probability mass functions. How such functions have traditionally been characterized is covered, and a review of how to work with such mathematical objects such as transforming density functions and how to measure differences between density function is presented. Definitions and basic operations with multiple random variables, including the Bayes law, are covered. The chapter ends with an outline of some important approximation techniques of so-called Monte Carlo methods.","PeriodicalId":300420,"journal":{"name":"Fundamentals of Machine Learning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamentals of Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198828044.003.0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The discussion provides a refresher of probability theory, in particular with respect to the formulations that build the theoretical language of modern machine learning. Probability theory is the formalism of random numbers, and this chapter outlines what these are and how they are characterized by probability density or probability mass functions. How such functions have traditionally been characterized is covered, and a review of how to work with such mathematical objects such as transforming density functions and how to measure differences between density function is presented. Definitions and basic operations with multiple random variables, including the Bayes law, are covered. The chapter ends with an outline of some important approximation techniques of so-called Monte Carlo methods.
基本概率论
讨论提供了概率论的复习,特别是关于构建现代机器学习理论语言的公式。概率论是随机数的形式,本章概述了随机数是什么,以及它们是如何用概率密度或概率质量函数来表征的。这些函数传统上是如何被描述的,并回顾了如何处理这些数学对象,如转换密度函数和如何测量密度函数之间的差异。包括贝叶斯定律在内的多随机变量的定义和基本操作。本章最后概述了一些重要的近似技术,即所谓的蒙特卡罗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信