Enhanced Neural SLAM with Semantic Segmentation in Dynamic Environments

Zhengcheng Shen, Minzhe Mao, Linh Kästner, Jens Lambrecht
{"title":"Enhanced Neural SLAM with Semantic Segmentation in Dynamic Environments","authors":"Zhengcheng Shen, Minzhe Mao, Linh Kästner, Jens Lambrecht","doi":"10.1109/ICARM58088.2023.10218889","DOIUrl":null,"url":null,"abstract":"Mobile robots face a significant challenge when navigating in dynamic environments such as human crowds. Existing research works typically employ separate data or simulators for dynamic object detection and navigation tasks. This paper combines the photo-realistic simulator Habitat with embedded dynamic objects to create a playground for optimizing vision-based navigation algorithms. To validate our system, we implement and train three approaches - zero masks, image memory inpainting, and semantic map filter - using semantically segmented information. We then implement and evaluate an adapted reinforcement-learning-based SLAM algorithm using the validation Gibson dataset. The results indicate that moderate localization bias occurs when the environment is small and the navigation process is short. However, the error will accumulate over time. Additionally, a dynamic environment leads to less accurate localization. All three approaches can reduce the localization error, while the semantic map filter approach shows the best overall performance.","PeriodicalId":220013,"journal":{"name":"2023 International Conference on Advanced Robotics and Mechatronics (ICARM)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advanced Robotics and Mechatronics (ICARM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARM58088.2023.10218889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile robots face a significant challenge when navigating in dynamic environments such as human crowds. Existing research works typically employ separate data or simulators for dynamic object detection and navigation tasks. This paper combines the photo-realistic simulator Habitat with embedded dynamic objects to create a playground for optimizing vision-based navigation algorithms. To validate our system, we implement and train three approaches - zero masks, image memory inpainting, and semantic map filter - using semantically segmented information. We then implement and evaluate an adapted reinforcement-learning-based SLAM algorithm using the validation Gibson dataset. The results indicate that moderate localization bias occurs when the environment is small and the navigation process is short. However, the error will accumulate over time. Additionally, a dynamic environment leads to less accurate localization. All three approaches can reduce the localization error, while the semantic map filter approach shows the best overall performance.
动态环境下基于语义分割的增强神经SLAM
移动机器人在人群等动态环境中导航时面临着重大挑战。现有的研究工作通常使用单独的数据或模拟器进行动态目标检测和导航任务。本文将真实感模拟器Habitat与嵌入式动态对象相结合,为优化基于视觉的导航算法创建了一个平台。为了验证我们的系统,我们使用语义分段信息实现并训练了三种方法-零掩模,图像记忆绘画和语义地图过滤。然后,我们使用验证Gibson数据集实现并评估了一种自适应的基于强化学习的SLAM算法。结果表明,在环境较小、导航过程较短的情况下,定位偏差较小。然而,误差会随着时间的推移而累积。此外,动态环境导致定位精度降低。三种方法都可以减少定位误差,其中语义映射过滤方法的总体性能最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信