{"title":"Decentralized design of interconnected H∞ feedback control systems with quantized signals","authors":"G. Zhai, Ning Chen, W. Gui","doi":"10.2478/amcs-2013-0024","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the design of interconnected H∞ feedback control systems with quantized signals. We assume that a decentralized dynamic output feedback has been designed for an interconnected continuous-time LTI system so that the closed-loop system is stable and a desired H∞ disturbance attenuation level is achieved, and that the subsystem measurement outputs are quantized before they are passed to the local controllers. We propose a local-output-dependent strategy for updating the parameters of the quantizers, so that the overall closed-loop system is asymptotically stable and achieves the same H∞ disturbance attenuation level. Both the pre-designed controllers and the parameters of the quantizers are constructed in a decentralized manner, depending on local measurement outputs.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amcs-2013-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In this paper, we consider the design of interconnected H∞ feedback control systems with quantized signals. We assume that a decentralized dynamic output feedback has been designed for an interconnected continuous-time LTI system so that the closed-loop system is stable and a desired H∞ disturbance attenuation level is achieved, and that the subsystem measurement outputs are quantized before they are passed to the local controllers. We propose a local-output-dependent strategy for updating the parameters of the quantizers, so that the overall closed-loop system is asymptotically stable and achieves the same H∞ disturbance attenuation level. Both the pre-designed controllers and the parameters of the quantizers are constructed in a decentralized manner, depending on local measurement outputs.