Building Explainable Predictive Analytics for Location-Dependent Time-Series Data

Yao-Yi Chiang, Yijun Lin, M. Franklin, S. Eckel, J. Ambite, Wei-Shinn Ku
{"title":"Building Explainable Predictive Analytics for Location-Dependent Time-Series Data","authors":"Yao-Yi Chiang, Yijun Lin, M. Franklin, S. Eckel, J. Ambite, Wei-Shinn Ku","doi":"10.1109/CogMI48466.2019.00037","DOIUrl":null,"url":null,"abstract":"There are increasing numbers of online sources of real-time and historical location-dependent time-series data describing various types of environmental phenomena, e.g., traffic conditions and air quality levels. When coupled with the information that characterizes the natural and built environments, these location-dependent time-series data can help better understand interactions between and within human social systems and the ecosystem. Nevertheless, these data are still limited by their spatial and temporal resolution for downstream use (e.g., generating residential-level environmental exposures for human health studies). In this paper, we present a vision of a general machine learning framework for explainable predictive analytics for location-dependent time-series data. The framework will effectively deal with data-and model-related challenges for general scientific predictive analytics on spatiotemporal environmental phenomena. The challenges include how to identify the main features driving the phenomena, how to handle complex spatiotemporal variations in the phenomena, and how to utilize sparse ground truth measurements for training and validation. The resulting framework will enable fine spatial and temporal scale environmental exposure assessment and allow researchers to carry out unprecedented inquiries, such as understanding relationships between health outcomes and long-term air pollution exposures.","PeriodicalId":116160,"journal":{"name":"2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CogMI48466.2019.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There are increasing numbers of online sources of real-time and historical location-dependent time-series data describing various types of environmental phenomena, e.g., traffic conditions and air quality levels. When coupled with the information that characterizes the natural and built environments, these location-dependent time-series data can help better understand interactions between and within human social systems and the ecosystem. Nevertheless, these data are still limited by their spatial and temporal resolution for downstream use (e.g., generating residential-level environmental exposures for human health studies). In this paper, we present a vision of a general machine learning framework for explainable predictive analytics for location-dependent time-series data. The framework will effectively deal with data-and model-related challenges for general scientific predictive analytics on spatiotemporal environmental phenomena. The challenges include how to identify the main features driving the phenomena, how to handle complex spatiotemporal variations in the phenomena, and how to utilize sparse ground truth measurements for training and validation. The resulting framework will enable fine spatial and temporal scale environmental exposure assessment and allow researchers to carry out unprecedented inquiries, such as understanding relationships between health outcomes and long-term air pollution exposures.
为位置相关时间序列数据构建可解释的预测分析
实时和历史位置相关时间序列数据的在线来源越来越多,这些数据描述了各种类型的环境现象,例如交通状况和空气质量水平。当与表征自然和建筑环境的信息相结合时,这些与位置相关的时间序列数据可以帮助更好地理解人类社会系统和生态系统之间和内部的相互作用。然而,这些数据仍然受到下游使用的空间和时间分辨率的限制(例如,为人类健康研究产生居住水平的环境暴露)。在本文中,我们提出了一个通用机器学习框架的愿景,用于位置相关时间序列数据的可解释预测分析。该框架将有效地处理与数据和模型相关的挑战,以实现对时空环境现象的一般科学预测分析。挑战包括如何识别驱动现象的主要特征,如何处理现象中复杂的时空变化,以及如何利用稀疏的地面真值测量进行训练和验证。由此产生的框架将能够进行精细的空间和时间尺度的环境暴露评估,并使研究人员能够进行前所未有的调查,例如了解健康结果与长期空气污染暴露之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信