A class of probabilistic models for role engineering

Mario Frank, D. Basin, J. Buhmann
{"title":"A class of probabilistic models for role engineering","authors":"Mario Frank, D. Basin, J. Buhmann","doi":"10.1145/1455770.1455809","DOIUrl":null,"url":null,"abstract":"Role Engineering is a security-critical task for systems using role-based access control (RBAC). Different role-mining approaches have been proposed that attempt to automatically infer appropriate roles from existing user-permission assignments. However, these approaches are mainly combinatorial and lack an underlying probabilistic model of the domain. We present the first probabilistic model for RBAC. Our model defines a general framework for expressing user permission assignments and can be specialized to different domains by limiting its degrees of freedom with appropriate constraints. For one practically important instance of this framework, we show how roles can be inferred from data using a state-of-the-art machine-learning algorithm. Experiments on both randomly generated and real-world data provide evidence that our approach not only creates meaningful roles but also identifies erroneous user-permission assignments in given data.","PeriodicalId":440730,"journal":{"name":"Proceedings of the 15th ACM conference on Computer and communications security","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM conference on Computer and communications security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1455770.1455809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

Abstract

Role Engineering is a security-critical task for systems using role-based access control (RBAC). Different role-mining approaches have been proposed that attempt to automatically infer appropriate roles from existing user-permission assignments. However, these approaches are mainly combinatorial and lack an underlying probabilistic model of the domain. We present the first probabilistic model for RBAC. Our model defines a general framework for expressing user permission assignments and can be specialized to different domains by limiting its degrees of freedom with appropriate constraints. For one practically important instance of this framework, we show how roles can be inferred from data using a state-of-the-art machine-learning algorithm. Experiments on both randomly generated and real-world data provide evidence that our approach not only creates meaningful roles but also identifies erroneous user-permission assignments in given data.
一类用于角色工程的概率模型
角色工程是使用基于角色的访问控制(RBAC)的系统的安全关键任务。已经提出了不同的角色挖掘方法,试图从现有的用户权限分配中自动推断适当的角色。然而,这些方法主要是组合的,缺乏领域的潜在概率模型。我们提出了RBAC的第一个概率模型。我们的模型定义了一个表达用户权限分配的通用框架,并且可以通过使用适当的约束限制其自由度来专门用于不同的领域。对于该框架的一个实际重要实例,我们展示了如何使用最先进的机器学习算法从数据中推断角色。对随机生成和真实数据的实验证明,我们的方法不仅可以创建有意义的角色,还可以识别给定数据中错误的用户权限分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信