An ANFIS-based multi-sensor structure for a mobile robotic system

A. Gallardo, Jake Taylor, C. Paolini, Hong-Kyu Lee, Gordon K. Lee
{"title":"An ANFIS-based multi-sensor structure for a mobile robotic system","authors":"A. Gallardo, Jake Taylor, C. Paolini, Hong-Kyu Lee, Gordon K. Lee","doi":"10.1109/CICA.2011.5945755","DOIUrl":null,"url":null,"abstract":"The control of a nonlinear system is a challenging problem particularly when the system has some uncertainty or there are imperfections in the model dynamics. One approach that has gained some success employs a fuzzy structure in concert with a neural network (ANFIS); the fuzzy component compensates for the uncertainty while the neural network component models the underlying system dynamics. This paper presents a system architecture for a mobile robotic system that employs an ANFIS controller for path tracking, a virtual field strategy for obstacle avoidance and path planning, and multiple sensors (an ultrasonic array, a thermal sensor, and a video streaming system) to obtain information about the environment. Simulation results and preliminary evaluation show that the proposed architecture is a feasible one for autonomous mobile robotic systems.","PeriodicalId":420555,"journal":{"name":"Computational Intelligence in Control and Automation (CICA)","volume":"866 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2011.5945755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The control of a nonlinear system is a challenging problem particularly when the system has some uncertainty or there are imperfections in the model dynamics. One approach that has gained some success employs a fuzzy structure in concert with a neural network (ANFIS); the fuzzy component compensates for the uncertainty while the neural network component models the underlying system dynamics. This paper presents a system architecture for a mobile robotic system that employs an ANFIS controller for path tracking, a virtual field strategy for obstacle avoidance and path planning, and multiple sensors (an ultrasonic array, a thermal sensor, and a video streaming system) to obtain information about the environment. Simulation results and preliminary evaluation show that the proposed architecture is a feasible one for autonomous mobile robotic systems.
一种基于anfiss的移动机器人系统多传感器结构
非线性系统的控制是一个具有挑战性的问题,特别是当系统具有一定的不确定性或模型动力学存在缺陷时。一种已经取得一些成功的方法是将模糊结构与神经网络(ANFIS)相结合;模糊分量补偿不确定性,而神经网络分量对潜在的系统动力学建模。本文提出了一种移动机器人系统的系统架构,该系统采用ANFIS控制器进行路径跟踪,采用虚拟场策略进行避障和路径规划,并使用多个传感器(超声波阵列,热传感器和视讯流系统)获取有关环境的信息。仿真结果和初步评价表明,该体系结构在自主移动机器人系统中是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信