{"title":"The comparison of wavelet and empirical mode decomposition method in prediction of sleep stages from EEG signals","authors":"Hasan Polat, M. Akin, M. S. Özerdem","doi":"10.1109/IDAP.2017.8090253","DOIUrl":null,"url":null,"abstract":"The aim of this study was to detect sleep stages of human by using EEG signals. In accordance with this purpose, discrete wavelet transforms (DWT) and empirical mode decomposition (EMD) were separately used for feature extraction. Subcomponents of EEG signals obtained by the two methods were assumed as feature vectors. Statistical parameters were used to reduce dimension of feature vectors. The same statistical parameters were used to compare performance of methods related to DWT and EMD. K nearest neighborhood (kNN) algorithm was used in classification final feature vectors that obtained EEG segments related to different sleep stages. The classification accuracies for feature vectors based on DWT and EMD were obtained as 100% and 88.13%, respectively.","PeriodicalId":111721,"journal":{"name":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAP.2017.8090253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The aim of this study was to detect sleep stages of human by using EEG signals. In accordance with this purpose, discrete wavelet transforms (DWT) and empirical mode decomposition (EMD) were separately used for feature extraction. Subcomponents of EEG signals obtained by the two methods were assumed as feature vectors. Statistical parameters were used to reduce dimension of feature vectors. The same statistical parameters were used to compare performance of methods related to DWT and EMD. K nearest neighborhood (kNN) algorithm was used in classification final feature vectors that obtained EEG segments related to different sleep stages. The classification accuracies for feature vectors based on DWT and EMD were obtained as 100% and 88.13%, respectively.