The comparison of wavelet and empirical mode decomposition method in prediction of sleep stages from EEG signals

Hasan Polat, M. Akin, M. S. Özerdem
{"title":"The comparison of wavelet and empirical mode decomposition method in prediction of sleep stages from EEG signals","authors":"Hasan Polat, M. Akin, M. S. Özerdem","doi":"10.1109/IDAP.2017.8090253","DOIUrl":null,"url":null,"abstract":"The aim of this study was to detect sleep stages of human by using EEG signals. In accordance with this purpose, discrete wavelet transforms (DWT) and empirical mode decomposition (EMD) were separately used for feature extraction. Subcomponents of EEG signals obtained by the two methods were assumed as feature vectors. Statistical parameters were used to reduce dimension of feature vectors. The same statistical parameters were used to compare performance of methods related to DWT and EMD. K nearest neighborhood (kNN) algorithm was used in classification final feature vectors that obtained EEG segments related to different sleep stages. The classification accuracies for feature vectors based on DWT and EMD were obtained as 100% and 88.13%, respectively.","PeriodicalId":111721,"journal":{"name":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAP.2017.8090253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The aim of this study was to detect sleep stages of human by using EEG signals. In accordance with this purpose, discrete wavelet transforms (DWT) and empirical mode decomposition (EMD) were separately used for feature extraction. Subcomponents of EEG signals obtained by the two methods were assumed as feature vectors. Statistical parameters were used to reduce dimension of feature vectors. The same statistical parameters were used to compare performance of methods related to DWT and EMD. K nearest neighborhood (kNN) algorithm was used in classification final feature vectors that obtained EEG segments related to different sleep stages. The classification accuracies for feature vectors based on DWT and EMD were obtained as 100% and 88.13%, respectively.
小波与经验模态分解方法在脑电信号睡眠阶段预测中的比较
本研究的目的是利用脑电图信号来检测人的睡眠阶段。为此,分别采用离散小波变换(DWT)和经验模态分解(EMD)进行特征提取。将两种方法得到的脑电信号子分量作为特征向量。采用统计参数对特征向量进行降维。使用相同的统计参数来比较DWT和EMD相关方法的性能。采用K近邻(kNN)算法对得到的与不同睡眠阶段相关的脑电片段的最终特征向量进行分类。基于DWT和EMD的特征向量分类准确率分别为100%和88.13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信