Cautionary Guidelines for Machine Learning Studies with Combinatorial Datasets

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Andrew F. Zahrt, Jeremy J. Henle, Scott E. Denmark*
{"title":"Cautionary Guidelines for Machine Learning Studies with Combinatorial Datasets","authors":"Andrew F. Zahrt,&nbsp;Jeremy J. Henle,&nbsp;Scott E. Denmark*","doi":"10.1021/acscombsci.0c00118","DOIUrl":null,"url":null,"abstract":"<p >Regression modeling is becoming increasingly prevalent in organic chemistry as a tool for reaction outcome prediction and mechanistic interrogation. Frequently, to acquire the requisite amount of data for such studies, researchers employ combinatorial datasets to maximize the number of data points while limiting the number of discrete chemical entities required. An often-overlooked problem in modeling studies using combinatorial datasets is the tendency to fit on patterns in the datasets (i.e., the presence or absence of a reactant or catalyst) rather than to identify meaningful trends between descriptors and the response variable. Consequently, the generality and interpretability of such models suffer. This report illustrates these well-known pitfalls in a case study, demonstrates the necessary control experiments to identify when this property will be problematic, and suggests how to perform further validation to assess general applicability and interpretability of models trained using combinatorial datasets.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acscombsci.0c00118","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscombsci.0c00118","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 20

Abstract

Regression modeling is becoming increasingly prevalent in organic chemistry as a tool for reaction outcome prediction and mechanistic interrogation. Frequently, to acquire the requisite amount of data for such studies, researchers employ combinatorial datasets to maximize the number of data points while limiting the number of discrete chemical entities required. An often-overlooked problem in modeling studies using combinatorial datasets is the tendency to fit on patterns in the datasets (i.e., the presence or absence of a reactant or catalyst) rather than to identify meaningful trends between descriptors and the response variable. Consequently, the generality and interpretability of such models suffer. This report illustrates these well-known pitfalls in a case study, demonstrates the necessary control experiments to identify when this property will be problematic, and suggests how to perform further validation to assess general applicability and interpretability of models trained using combinatorial datasets.

Abstract Image

使用组合数据集进行机器学习研究的警示指南
回归模型作为一种预测反应结果和机理询问的工具,在有机化学中越来越流行。通常,为了获得此类研究所需的数据量,研究人员使用组合数据集来最大化数据点的数量,同时限制所需的离散化学实体的数量。在使用组合数据集的建模研究中,一个经常被忽视的问题是倾向于拟合数据集中的模式(即,存在或不存在反应物或催化剂),而不是识别描述符和响应变量之间有意义的趋势。因此,这些模型的通用性和可解释性受到影响。本报告在一个案例研究中说明了这些众所周知的陷阱,演示了必要的控制实验来识别这种属性何时会出现问题,并建议如何进行进一步验证,以评估使用组合数据集训练的模型的一般适用性和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信