On the sparseness of the downsets of permutations via their number of separators

Eli Bagno, E. Eisenberg, S. Reches, Moriah Sigron
{"title":"On the sparseness of the downsets of permutations via their number of separators","authors":"Eli Bagno, E. Eisenberg, S. Reches, Moriah Sigron","doi":"10.54550/eca2021v1s3r21","DOIUrl":null,"url":null,"abstract":"Conventionally, a pair (σi, σi+1) is a bond in a permutation σ = σ1σ2 · · ·σn if σi− σi+1 = ±1. The number of bonds in a permutation σ ∈ Sn has a direct influence on the number of distinct patterns of order n − 1 contained in σ, affecting the structure of the downset of σ in the containment poset ⋃ n∈N Sn. Thus, to characterize the sparseness of the downset of a permutation σ ∈ Sn, we aim not only to find the number of bonds in σ, but also to predict the number of bonds contained in its patterns. To this end, we introduce a new statistic, separator number, as a significant factor in measuring the sparseness of this poset. An element σj in a permutation σ = σ1 · · ·σn ∈ Sn is defined to be a separator of σ if we can obtain a new bond by omitting it from σ. We also present some enumerative and asymptotic results regarding this new statistic.","PeriodicalId":340033,"journal":{"name":"Enumerative Combinatorics and Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enumerative Combinatorics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54550/eca2021v1s3r21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Conventionally, a pair (σi, σi+1) is a bond in a permutation σ = σ1σ2 · · ·σn if σi− σi+1 = ±1. The number of bonds in a permutation σ ∈ Sn has a direct influence on the number of distinct patterns of order n − 1 contained in σ, affecting the structure of the downset of σ in the containment poset ⋃ n∈N Sn. Thus, to characterize the sparseness of the downset of a permutation σ ∈ Sn, we aim not only to find the number of bonds in σ, but also to predict the number of bonds contained in its patterns. To this end, we introduce a new statistic, separator number, as a significant factor in measuring the sparseness of this poset. An element σj in a permutation σ = σ1 · · ·σn ∈ Sn is defined to be a separator of σ if we can obtain a new bond by omitting it from σ. We also present some enumerative and asymptotic results regarding this new statistic.
通过分隔符的数目来研究排列下集的稀疏性
通常,当σi−σi+1 =±1时,一对(σi, σi+1)键的排列形式为σ = σ1σ2···σn。一个排列σ∈Sn中的键数直接影响到σ中包含的n−1阶不同模式的个数,从而影响到包含偏序集∑n∈n Sn中σ的下集的结构。因此,为了描述置换σ∈Sn的下集的稀疏性,我们不仅要找到σ中的键数,而且要预测其模式中包含的键数。为此,我们引入了一个新的统计量,分隔符数,作为衡量该偏序集稀疏性的一个重要因素。在σ = σ1···σn∈Sn的排列中,如果可以从σ中省略一个新键,则定义元素σj为σ的分隔符。我们也给出了一些关于这个新统计量的枚举性和渐近性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信